[Vijos 1049] 送给圣诞夜的礼品 · 矩阵乘法

置换是循环往复的,并且我们可以发现虽然K很大,但是m<=10,那么我们可以先预处理出a[i][j]表示第i次置换以后位置j上是原递增序列中的哪一个数,然后把k分成两部分:k/m 和 k%m 现在把m次置换称为一个大置换,那大置换的次数就是k/m次,剩下的k%m次是依次置换。由于我们一开始已经预处理出每次置换一个以后的序列,所以可以把a[m][1..n]和a[k%m][1..n]提取出来建立两个矩阵matrix1、matrix2,设初始的序列(即递增序列)ans,最终的序列就是ans*(matrix1^(k/m))*matrix2,注意顺序不能颠倒,笔者就被这个坑了好久。。。。matrix1的k/m次方用快速幂求。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn=105;
struct matrix{
	int n,m,num[maxn][maxn];
	void init(int i,int j){
		n=i;m=j;
		memset(num,0,sizeof num);
	}
};
int n,m,k,a[maxn][maxn],g[maxn][maxn];
matrix ans;

matrix operator *(matrix a,matrix b){
	matrix c;c.init(a.n,b.m);
	for (int i=1;i<=c.n;i++)
		for (int j=1;j<=c.m;j++)
			for (int t=1;t<=a.m;t++)	
				c.num[i][j]+=a.num[i][t]*b.num[t][j];
	return c;
}

matrix work1(){
	matrix unit,p;						//提取matrix1 
	unit.init(n,n);
	for (int i=1;i<=n;i++)
		unit.num[a[m][i]][i]=1;
	p=unit;
	for (int tot=k/m-1;tot>0;tot>>=1){	//快速幂 
		if (tot&1) p=p*unit;
		unit=unit*unit;
	}
	return p;
}

matrix work2(){
	matrix p;p.init(n,n);			//提取matrix2 
	for (int i=1;i<=n;i++)
		p.num[a[k%m][i]][i]=1;
	return p;
}

int main(){
	cin>>n>>m>>k;
	for (int i=1;i<=n;i++) a[0][i]=i;
	for (int i=1;i<=m;i++)				//预处理 
		for (int j=1;j<=n;j++){
			cin>>g[i][j];
			a[i][j]=a[i-1][g[i][j]];
		}
	ans.init(1,n);
	for (int i=1;i<=n;i++) ans.num[1][i]=i;	//初始序列 
	ans=ans*work1()*work2();
	for (int i=1;i<=n;i++) cout<<ans.num[1][i]<<" ";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值