置换是循环往复的,并且我们可以发现虽然K很大,但是m<=10,那么我们可以先预处理出a[i][j]表示第i次置换以后位置j上是原递增序列中的哪一个数,然后把k分成两部分:k/m 和 k%m 现在把m次置换称为一个大置换,那大置换的次数就是k/m次,剩下的k%m次是依次置换。由于我们一开始已经预处理出每次置换一个以后的序列,所以可以把a[m][1..n]和a[k%m][1..n]提取出来建立两个矩阵matrix1、matrix2,设初始的序列(即递增序列)ans,最终的序列就是ans*(matrix1^(k/m))*matrix2,注意顺序不能颠倒,笔者就被这个坑了好久。。。。matrix1的k/m次方用快速幂求。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=105;
struct matrix{
int n,m,num[maxn][maxn];
void init(int i,int j){
n=i;m=j;
memset(num,0,sizeof num);
}
};
int n,m,k,a[maxn][maxn],g[maxn][maxn];
matrix ans;
matrix operator *(matrix a,matrix b){
matrix c;c.init(a.n,b.m);
for (int i=1;i<=c.n;i++)
for (int j=1;j<=c.m;j++)
for (int t=1;t<=a.m;t++)
c.num[i][j]+=a.num[i][t]*b.num[t][j];
return c;
}
matrix work1(){
matrix unit,p; //提取matrix1
unit.init(n,n);
for (int i=1;i<=n;i++)
unit.num[a[m][i]][i]=1;
p=unit;
for (int tot=k/m-1;tot>0;tot>>=1){ //快速幂
if (tot&1) p=p*unit;
unit=unit*unit;
}
return p;
}
matrix work2(){
matrix p;p.init(n,n); //提取matrix2
for (int i=1;i<=n;i++)
p.num[a[k%m][i]][i]=1;
return p;
}
int main(){
cin>>n>>m>>k;
for (int i=1;i<=n;i++) a[0][i]=i;
for (int i=1;i<=m;i++) //预处理
for (int j=1;j<=n;j++){
cin>>g[i][j];
a[i][j]=a[i-1][g[i][j]];
}
ans.init(1,n);
for (int i=1;i<=n;i++) ans.num[1][i]=i; //初始序列
ans=ans*work1()*work2();
for (int i=1;i<=n;i++) cout<<ans.num[1][i]<<" ";
return 0;
}