【vijos1049】【矩阵乘法】送给圣诞夜的礼品

一道经典的矩阵乘法题目,将m个置换相乘,然后使用矩阵快速幂求出执行(k / m)次后的矩阵,对于剩下的几项模拟即可。

如下图,相乘一次就等价于将1 2 3 4置换为3 1 2 4

但是在代码实现的时候由于矩阵乘法不满足交换率,需要将矩阵颠倒一下,便于使用快速幂。

代码:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 100 + 10;
const int maxm = 15;
struct Matrix
{
	int v[maxn][maxn];
	int x,y;
	Matrix()
	{
		memset(v,0,sizeof(v));
		x = y = 0;
	}
};
Matrix R,p;
Matrix op[maxm];
int n,m,k;
void init()
{
	freopen("vijos1049.in","r",stdin);
	freopen("vijos1049.out","w",stdout);
}

Matrix mtMul(Matrix A,Matrix B)
{
	if(!A.x || !A.y)return B;
	Matrix C;
	C.x = A.x;C.y = B.y;
	for(int i = 1;i <= A.x;i++)
	{
		for(int j = 1;j <= B.y;j++)
		{
			for(int k = 1;k <= A.y;k++)
			{
				C.v[i][j] += A.v[i][k] * B.v[k][j];
			}
		}
	}
	return C;
}

void readdata()
{
	scanf("%d%d%d",&n,&m,&k);
	for(int i = 1;i <= n;i++)R.v[1][i] = i;
	R.x = 1;R.y = n;
	p.x = n;p.y = n;
	for(int i = 1;i <= m;i++)
	{
		op[i].x = op[i].y = n;
		for(int j = 1;j <= n;j++)
		{
			int tmp;
			scanf("%d",&tmp);
			op[i].v[tmp][j] = 1;
		}
		if(i == 1)p = op[i];
		else p = mtMul(p,op[i]);
	}
}

Matrix mtPow(Matrix A,int k)
{
	if(k == 1)return A;
	Matrix ans;
	while(k)
	{
		if(k & 1)ans = mtMul(ans,A);
		k >>= 1;
		A = mtMul(A,A);
	}
	return ans;
}

void solve()
{
	int g = k / m,h = k % m;
	Matrix t = mtPow(p,g);
	for(int i = 1;i <= h;i++)t = mtMul(t,op[i]);
	R = mtMul(R,t);
	for(int i = 1;i < n;i++)
	{
		printf("%d ",R.v[1][i]);
	}
	printf("%d\n",R.v[1][n]);
}

int main()
{
	init();
	readdata();
	solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值