对新手来说也算是很好的一条矩阵乘法题。
基础应该是状压DP,但是n<10^9,所以要用矩阵快速幂来加速。
友链:http://blog.sina.com.cn/s/blog_5774b8650100f9ob.html
一开始怎么都没想到转移方程,看了M67和其他几个blog以及VJ上的讨论版还是有点似是而非的感觉,突然有天晚上躺在床上睡觉之前就想通了。。。在此把笔者当时没弄懂的地方详解一下:
设第p行状态为i,第p-1行状态为j,如果有某个位置k(1<=k<=5),有i[k]=1说明这个位置要放一个骨牌,如果j[k]=0的话,因为我们要填满,所以这个骨牌肯定就要竖着放,否则就不会填满;那如果j[k]=1说明上一行的第k列已经有骨牌了,那么这个只能横着放。
由此得到:如果第k列上是竖着放骨牌,那么有i[k]、j[k]中一个为0,一个为1;如果是横着放骨牌,那么i[k]、j[k]都为1,所以如果i能由j转移,首先要满足i or j =2^m-1 ,然后,i&j在某个位置上如果=1说明这个位置是横过来放的,横过来放就肯定是连续的2个或者4个骨牌,所以i&j对应的合法二进制数应该是:00000,00011,00110,01100,01111,11110,11011,11000,改成十进制以后就是0,3,6,12,15,24,27,30.于是我们就得到了转移的条件,见代码line32.
其他的东西在VJ讨论版上还是比较具体的,在此就不做赘述了。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
int n,m,p,f[33];
struct matrix{
int num[33][33];
void init(){
memset(num,0,sizeof num);
}
}ans,unit;
matrix operator *(matrix a,matrix b){
matrix c;
c.init();
for (int i=0;i<m;i++)
for (int j=0;j<m;j++)
for (int t=0;t<m;t++)
c.num[i][j]=(c.num[i][j]+a.num[i][t]*b.num[t][j])%p;
return c;
}
int main(){
cin>>n>>m>>p;m=1<<m;
memset(f,0,sizeof f);
f[0]=f[3]=f[6]=f[12]=f[15]=f[24]=f[27]=f[30]=1;
unit.init();
for (int i=0;i<m;i++)
for (int j=0;j<m;j++)
if ( ((i|j)==m-1) && f[i&j])//……优先级……
unit.num[i][j]=1;
ans.init();
for (int i=0;i<m;i++) ans.num[i][i]=1;
for (int tot=n;tot;tot>>=1){
if (tot&1) ans=ans*unit;
unit=unit*unit;
}
cout<<ans.num[m-1][m-1]%p<<endl;
return 0;
}
蒟蒻笔者写的时候一直以为“|”的优先级要高于“==”的。。。结果WA的非常惨。。。贴个表格当备忘了。。。