Move · 卡特兰数 + 组合数学 附逆元

比较经典的数论题。

大意:从(0,0)出发,每次可以向(i+1,j),(i+1,j+1),(i+1,j-1)三个方向走,但是要求不能经过第四象限,问到(n,0)有多少种走法。

每走一步都会在横坐标上前进一个,所以肯定是走n步,只需要考虑纵坐标就行了。

如果不考虑直走的情况,,枚举k表示上去了多少步,那么既然最终要到(n,0)肯定是要上去多少步还要下来多少步,那其实这就是个卡特兰数啦,然后剩下的n-2*k步直走的,随便插在哪里都可以了,也就是在n个空格里插入n-2*k个数,很简单的一个组合数嘛。

所以最终式子就是,化简一下就是,Ck表示第k个卡特兰数。

另外学到了几个小知识:

1.预处理阶乘的逆元的时候,求出了frac[i]的逆元ny[i],那么ny[i-1] = ny[i]  * (i+1),这样只要求出frac[N]的逆元就可以线性逆推求逆元了,复杂度O(n+log)。

2.求卡特兰数的另一种方法,可以用两个组合数来求:,这样的话可以少求一些东西,写代码的时候就会明白了,很方便。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define f(i, x, y) for (int i=x; i<=y; i++)

typedef long long LL;
const int N = 1e6 + 10;
const LL mod = 1e9 + 7;
int T,n;
LL ans, frac[N+10], ny[N+10];

inline int exgcd(LL a, LL b, LL &x, LL &y){
	if ( b == 0 ) {
		x = 1; y = 0;
		return a;
	}
	int ret = exgcd(b, a%b, x, y);
	LL t = x; 
	x = y;
	y = t - (a/b) * y;
	return ret;
}

LL calc_catalan(int k){
	LL tmp1, tmp2 ,ret;
	tmp1 = frac[ k + k ] * ny[k] % mod * ny[k] % mod;
	tmp2 = frac[ k + k ] * ny[ k - 1 ] % mod * ny[ k + 1 ] % mod;
	ret = tmp1 - tmp2 ;
	for ( ; ret < 0 ; ret += mod );
	return ret;
}

int main(){
	freopen("move.in", "r", stdin);
	freopen("move.out", "w", stdout);
	scanf("%d\n", &T);
	frac[0] = 1; f(i, 1, N) frac[i] = frac[i-1] * i % mod;
	LL y;
	exgcd(frac[N], mod, ny[N], y);
	for (int i=N-1;i>=0;i--) ny[i] = ny[i+1] * (i+1)  % mod;
	
	while (T--) {
		scanf("%d\n", &n); 
		ans=0;
		LL tmp1, tmp2;
		f(k, 0, n/2){
			tmp1 = frac[n] * ny[ k + k ] % mod * ny[ n - k - k ] % mod;
			tmp2 = calc_catalan( k );
			(ans += tmp1 * tmp2 ) %= mod;
		}
		printf("%I64d\n", ans);
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值