[BZOJ 1036] ZJOI 2008 树的统计Count · 树链剖分

拖了超级久的树链剖分终于真正写了一次。

个人感觉就是,代码长只是因为函数有点多,总体思想和代码都很水,除了两遍dfs外基本就是裸的线段树了。

这不是一篇比较好的树剖的讲解

代码真的很水啊。。。。

个人速记(因为我太弱了):

第一遍dfs:size,son,dep

第二遍dfs:origin,tree,top

我觉得最值得注意的细节就是 在操作中要分清用的是原树中的点编号还是线段树中的点编号

#include <bits/stdc++.h> 
using namespace std;
#define f(i, x, y) for (int i = x; i <= y; ++ i)
#define ff(i, x, y) for (int i = x; i < y; ++ i)
#define pb push_back

const int N = 30010;
const int T = N * 4;
int fa[N], size[N], son[N], dep[N];
int ori[N], tr[N], top[N];
int Max[T], sum[T], tip[N];
vector<int> a[N], tmp[N];
int n, m, val[N], tot, Q, x, y;
int SUM, MAX;

inline void get(int &k){
	int p = 0, t = 1; char x = getchar();
	while ( x < '0' || x > '9' ) {
		if ( x == '-' ) t = -1;
		x = getchar();
	}
	while ( x >='0' && x <= '9' ) p = p * 10 + x - '0', x = getchar();
	k = p * t;
	return ;
}

inline void dfs1(int t, int depth){
	dep[t] = depth; size[t] = 1;
	ff(i, 0, tmp[t].size())
		if ( ! dep[ tmp[t][i] ] ) {
			int v = tmp[t][i];
			dfs1( v, depth + 1);
			
			size[t] += size[v];
			if ( size[ son[t] ] < size[v] ) son[t] = v;
			fa[v] = t;
			a[t].pb(v);
		}
}

inline void dfs2(int t, int anc){
	tr[t] = ++ tot ; ori[tot] = t; top[t] = anc;
	if ( ! son[t] ) return ;
	dfs2( son[t], anc );
	ff(i, 0, a[t].size())
		if ( a[t][i] != son[t] )
			dfs2( a[t][i], a[t][i] );
}
 
inline void build(int p, int l, int r){		//以下全是线段树的操作 
	if ( l == r ){
		Max[p] = sum[p] = val[ ori[l] ];
		return ;
	}
	int mid = ( l + r ) >> 1; 
	build( p + p + 1 , l , mid );
	build( p + p + 2 , mid + 1 , r );
	Max[p] = max( Max[p+p+1], Max[p+p+2] );
	sum[p] = sum[p+p+1] + sum[p+p+2];
	return ;
}

void update(int p, int l, int r, int t, int x){
	if ( t < l || r < t ) return ;
	if ( l == r ){
		if ( l == t ) sum[p] = Max[p] = x;
		return ;
	}
	int mid = ( l + r ) >> 1;
	update( p + p + 1, l, mid, t, x);
	update( p + p + 2, mid + 1, r, t, x);
	sum[p] = sum[p+p+1] + sum[p+p+2];
	Max[p] = max( Max[p+p+1], Max[p+p+2] );
	return ;
}

void Query(int p, int l, int r, int L, int R){
	if ( l > r ) return ;
	if ( R < l || r < L ) return ;
	if ( L <= l && r <= R ){
		MAX = max( MAX , Max[p] );
		SUM += sum[p];
		return ;
	}
	int mid = ( l + r ) >> 1;
	Query( p + p + 1, l, mid, L, R );
	Query( p + p + 2, mid + 1, r, L, R );
}

void query(){		// 将查询最大值和求和合并在一起 
	SUM = 0; MAX = -1e5; 
	int f1 = top[x] , f2 = top[y];
	while ( f1 != f2 ) {
		if ( dep[f1] < dep[f2] ) swap( f1 , f2 ), swap( x , y ); 
		Query( 0, 1, n, tr[f1], tr[x]) ;//注意代入线段树查询的是tr[x]!!! 
		x = fa[f1] ; f1 = top[x];
	}
	if ( dep[x] > dep[y] ) swap( x , y );// 同一条链上 深度小的节点在线段树中的编号也小 
	Query( 0 , 1 , n , tr[x] , tr[y] );
}

int main(){
	get(n);
	ff(i, 1, n) {
		get( x ), get( y );
		tmp[x].pb( y ), tmp[y].pb( x );
	}
	f(i, 1, n) get( val[i] );
	dfs1( 1 , 1 );
	dfs2( 1 , 1 );
	build( 0, 1, n );
	get( Q );
	while ( Q -- ){
		char x1 = getchar(), x2 = getchar();	
		get(x); 
		get(y);
		if ( x1 == 'C' ) {
			update(0, 1, n, tr[x], y);
			val[x] = y;
			continue;
		}
		query();
		if ( x2 == 'S' ) printf("%d\n", SUM);
			else printf("%d\n", MAX);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值