2024年元旦假期国内旅游出游1.35亿人次,国内旅游收入797.3亿元

2024年元旦期间,文化和旅游市场强劲复苏,冰雪旅游、城市公园和主题乐园成为新亮点。油菜花科技公司通过提供智能化解决方案推动行业发展,年轻一代和中老年群体的出游热情带动了旅游消费的升级和多元化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       2024年元旦假期,全国文化和旅游市场平稳有序。经文化和旅游部数据中心测算,元旦假期3天,全国国内旅游出游1.35亿人次,同比增长155.3%,按可比口径较2019年同期增长9.4%;实现国内旅游收入797.3亿元,同比增长200.7%,较2019年同期增长5.6%。

      元旦期间,城乡居民出游意愿强烈,文化参与氛围浓厚,音乐节、演唱会,家人和亲友集体出游趋于增加。旅游市场呈现“冰雪休闲、文化参与,本地出游、个性消费,人间烟火、欢乐祥和”的总体特征。

      冰雪旅游热度持续攀升。黑龙江开展冬季冰雪旅游“百日行动”,充分发挥冰雪资源优势,推出跨年夜现场演出等活动,重点景区、地铁、公交延长运营时间,暖心的旅游服务细节成为网络热点。辽宁推出“山海有情 天辽地宁”冬季主题系列活动百余项,将冰雪温泉、民俗文化与体育活动深度融合。北京发放3万张冰雪消费券,助力激发节日消费活力。华东、华中、华南等地冰雪休闲热度同样攀升。城市冰雪主题项目、主题公园成为居民休闲娱乐的重要消费场景。

b5b52dfba11d61f334f9869710d8cefe.jpeg

       旅游休闲从传统景区转向城市公园和主题乐园。在亲子娱乐、文化体验、户外运动等需求牵引下,城市公园、主题乐园、商业街区成为元旦假期文化和旅游休闲主要场景。假期首日,颐和园、天坛、北海等北京市属11家公园和中国园林博物馆共接待游客21.8万人次,同比增长88.0%。湖北十堰打造的沉浸式文旅街区“武陵不夜城”开街,首日吸引游客超10万人次。假日期间,旅游市场热度整体集中在热门旅游城市及人口密集地区,传统自然景区和远离客源地的旅游度假区客流压力不大。

      广州油菜花信息科技有限公司成立于2012年,迄今已为全国超10000家电玩/乐园/景区提供场地管理系统,是行业前沿的运营管理及会员营销解决方案提供商;

油菜花科技具备高新技术企业资质,旗下全部软硬件产品均为自主研发,拥有完整的游乐场地智能化管理产品矩阵:

软件产品:游乐宝,娱乐管家,盈客宝,互动宝,游乐掌柜,芸苔

物联网硬件:闸机,卡头,实物币设备,彩票设备,手持POS机,自助设备

油菜花科技通过以上方案为场地提供商品,会员,库存,收银,营销,财务,员工等全方面智慧门店解决方案,助力提高运营效率和盈利能力。

     “90后”“00后”让假日旅游消费变得更时尚。年轻一代同时进入供需两侧,共同解锁越来越多的新玩法、创造一波又一波的新热度。“登高迎接新年的第一缕阳光”等追求仪式感的出行动机让“日照金山”“登高”“跨年演唱会”等成为热搜关键词。

4b349114c0694380d84e5aebe62156a5.jpeg

      中老年群体、农村居民、中小城市居民出游意愿走高。旅游者行列中,中老年群体、农村居民、中小城市居民参与度提高,显著影响假日旅游市场的主体走势。文化和旅游部数据中心大数据监测显示,假期前两天,农村地区居民出游率达4.2%,贡献的游客人数占同期全国国内游客人数的20.0%,创有元旦假期监测记录以来新高。

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
数据集介绍:36种动物目标检测数据集 一、基础信息 数据集名称:36种动物目标检测数据集 图片数量: - 训练集:6,719张图片 - 验证集:1,907张图片 - 测试集:962张图片 分类类别: 涵盖36种陆地及空中动物类别,包括但不限于: - 家畜类:Cattle(牛)、Sheep(羊)、Goat(山羊)、Pig(猪) - 野生哺乳类:Bear(熊)、Fox(狐)、Lynx(猞猁)、Otter(水獭) - 鸟类:Eagle(鹰)、Owl(猫头鹰)、Parrot(鹦鹉)、Swan(天鹅) - 小型动物:Rabbit(兔)、Mouse(鼠)、Hedgehog(刺猬)、Frog(蛙) 标注格式: YOLO格式,包含目标边界框坐标及类别索引,可直接用于主流深度学习框架训练。 二、适用场景 农业与畜牧业监测: 支持开发牲畜数量统计、健康监测系统,提升养殖场自动化管理水平。 生态保护与野生动物研究: 用于自然保护区动物分布监测、濒危物种识别等场景的AI模型训练。 智能安防系统: 集成至CCTV监控系统,检测农场/城市环境中特定动物(如Raccoon浣熊、Snake蛇类)的入侵。 教育科研工具: 为动物行为学、生物多样性研究提供标准化视觉数据资源。 三、数据集优势 跨场景物种覆盖: 同时包含家养动物与野生动物,覆盖空中/地面/洞穴物种,支持模型泛化能力训练。 精细化标注体系: 严格遵循YOLO标注标准,针对中小型动物(如Sparrow麻雀、Spider蜘蛛)提供高密度标注。 多环境适应性: 数据来源包含航拍(Aerial)、地面拍摄等多视角,适应复杂背景下的检测需求。 即用型数据划分: 按7:2:1比例预分割训练集/验证集/测试集,支持开箱即用的模型开发流程。 任务扩展潜力: 除目标检测外,可支持动物行为分析、种群密度估计等衍生任务开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值