自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 Faster-rcnn代码python2转换python3的KeyError: b‘TEST‘问题

一直用的一个faster-rcnn代码是python2的,决定把它改为python3。很多报错都是print函数,xrange函数,较好解决。解决到最后被一个报错,卡了一天,在网上也无法找到解决方案,记录一下:报错如下:Caused by op 'PyFunc', defined at: File "/home/q/yd/Faster-RCNN-21/tools/demo.py", line 118, in <module> net = get_network(arg...

2020-09-23 15:45:12 123

原创 python环境管理

不论linux、windows,用conda实现环境管理为最优策略。安装conda后,conda list可查看现有环境初始只有一个可以按需创造多个环境,新建环境在conda的env目录下新环境需要添加包,conda install可添加,但通常conda install里的包会少这时,最优策略是,在该环境下安装一个pip在该环境下执行pip install ,便可以用pip来安装包如果多个pip很混乱,可以直接用路径指明具体是哪一个pip,这样就不会混乱无论conda,还是

2020-08-09 17:29:58 32

原创 python深度学习环境配置扫盲

ubuntu系统下,基于gpu和python做深度学习,需要安装的内容及作用:1.显卡驱动:调用显卡的基础,安装成功后,可以调用nvidia-smi指令,查看显卡驱动版本2.cuda和cudnn:nvidia为显卡加速计算提供的库,cuda和显卡驱动是有对应关系的为了便于多个不同代码的调试,我们可能需要多个版本的cuda,只要将多个cuda都解压到/usr/local目录即可,具体使用哪个,可以通过用户的环境变量配置,使不同的文件夹(用户/环境)使用不同的cuda版本。用户环境变量修

2020-06-17 18:01:48 123

原创 YOLO系列概览

1.YOLO V1采用一个24层的卷积网络加2个全连接层。将画面分成S*S个部分,每个部分负责预测B个框,每个框有x,y,w,h,confidence(是否有目标,IOU为多少)五个预测参数。在VOC数据集中,有20个类别。算法中,B=2,即每个分格预测2个框。所以,最后的输出向量维度为S*S*30,30=5+5+20,最后20个参数代表属于每一个类别的概率,这个概率由预测的2个框共享。由此,也能看出V1的一个重大缺陷:每个分格实际只可以预测一个目标,因为分类概率共享,对于目标密集的画面

2020-06-05 15:38:54 71

原创 网络剪枝

1.全连接层剪枝2.卷积核剪枝卷积核剪枝的学习可参考这篇论文《Pruning Filters For Efficient ConvNets》解决如下问题:前人工作只对全连接层进行了剪枝,未处理卷积层解决思路:对卷积核计算所有项的绝对值和,剪除绝对值和小的。结论:在CIFAR10上,VGG-16的推理成本可降低高达34%,ResNet-110最高可降低38%,同时通过重新训练网络恢复接近原始精度。具体结果对比如下:...

2020-06-05 11:31:17 157

原创 朴素贝叶斯分类理解

朴素贝叶斯分类算法源于贝叶斯定理。贝叶斯定理:P(AB)=P(A|B)P(B)=P(B|A)P(A),也即P(A|B)=P(B|A)P(A)/P(B)贝叶斯定理的本质:两种条件概率的标书,结果相等。先验概率:袋子里10个字母,6个A,4个B,问抓到A的概率P(A),显然P(A)=0.6。后验概率:即条件概率,袋子里10个字母,抓了10次,6次都是A,问袋子里有几个A。朴素贝叶斯算法可解决的问题:根据观测的现象、属性等来预测分类。即根据样本数据得到一个分类器,来进行后续预测。举例:

2020-06-04 19:15:39 84

原创 SVM算法扫盲理解

名称:SVM(support vector machine)支持向量机要解决的问题:二分类问题形象理解:用一个超平面,将数据二分类。寻找最优超平面,并使得两个类别中,距离超平面距离最近的点,距超平面的距离最远。也即:两个类别中,距离超平面最近的点,会分别决定两个平行的超平面,这两个超平面称为支持向量。本质:凸函数优化问题(一定有全局最优解),优化的目标为:两个支持向量距离最远。线性可分:在N维空间中,若有n-1维的向量可完成数据的分类,该问题即线性可分,寻找到的n-1维向量即超平面。如何

2020-06-04 18:21:16 40

原创 Faster-RCNN基于tensorflow的训练理解

深度学习的训练的理论是梯度下降,这个理论推导很复杂。发展历程中,起源是hinton于1986年提出的BP算法,后续在卷积神经网络和激活函数变为ReLU函数后,梯度下降的算法又有所变化。对梯度下降训练深度网络的理论的学习,重点关注hinton的论文《Learning internal representations by error propagation》。深度学习中,各个框架的使用,如tf,pytorch等,很重要的一点,就是解决了训练问题。训练的本质是,另损失函数,对各个待训练参数求偏导,寻找梯度下

2020-05-29 18:29:14 132

原创 keras例程学习与神经网络理解(一)

keras的example文件夹中有很多例程,学习mnist_mlp.py例程该例程实现功能为,从mnist数据集获取60000个训练样本和10000个测试样本,样本为0-9十个数字,用全连接神经网络进行训练,并测试结果。例程采用60000个数据样本进行训练,对于一般的电脑来说,这样训练会比较费时间,学习测试较慢所以,可以加入以下几行代码:# mnist has 60000 datas,down ...

2018-03-19 17:15:39 1198 2

空空如也

vc蓝牙与安卓手机通信

发表于 2016-07-21 最后回复 2016-07-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除