一些颜色代码,写下来备用参考

来源:http://blog.csdn.net/itzhiren/archive/2007/05/31/1633199.aspx

颜色代码附:

 1白色 #FFFFFF
 
 2红色#FF0000
 
 3绿色#00FF00
 
 4蓝色#0000FF
 
 5牡丹红#FF00FF
 
 6青色 #00FFFF
 
 7黄色#FFFF00
 
 8黑色#000000
 
 9海蓝#70DB93
 
 10巧克力色#5C3317
 
 11蓝紫色 #9F5F9F
 
 12黄铜色#B5A642
 
 13亮金色#D9D919
 
 14棕色#A67D3D
 
 15青铜色 #8C7853
 
 162号青铜色 #A67D3D
 
 17士官服蓝色 #5F9F9F
 
 18冷铜色 #D98719
 
 19铜色 #B87333
 
 20珊瑚红 #FF7F00
 
 21紫蓝色 #42426F
 
 22深棕 #5C4033
 
 23深绿 #2F4F2F
 
 24深铜绿色 #4A766E
 
 25深橄榄绿 #4F4F2F
 
 26深兰花色 #9932CD
 
 27深紫色 #871F78
 
 28深石板蓝 #6B238E
 
 29深铅灰色 #2F4F4F
 
 30深棕褐色 #97694F
 
 32深绿松石色 #7093DB
 
 33暗木色 #855E42
 
 34淡灰色 #545454
 
 35土灰玫瑰红色 #856363
 
 36长石色 #D19275
 
 37火砖色#8E2323
 
 38森林绿 #238E23
 
 39金色 #CD7F32
 
 40鲜黄色 #DBDB70
 
 41灰色 #C0C0C0
 
 42铜绿色 #527F76
 
 43青黄色 #93DB70
 
 44猎人绿 #215E21
 

 45印度红 #4E2F2F
 
 46土黄色 #9F9F5F
 
 47浅蓝色 #C0D9D9
 
 48浅灰色 #A8A8A8
 

 49浅钢蓝色 #8F8FBD
 
 59浅木色 #E9C2A6
 
 60石灰绿色 #32CD32
 
 61桔黄色 #E47833
 

 62褐红色 #8E236B
 
 63中海蓝色 #32CD99
 
 64中蓝色 #3232CD
 
 65中森林绿 #6B8E23
 
 66中鲜黄色 #EAEAAE
 
 67中兰花色 #9370DB
 
 68中海绿色 #426F42
 
 69中石板蓝色 #7F00FF
 

 70中春绿色 #7FFF00
 

 71中绿松石色 #70DBDB
 72中紫红色 #DB7093 73中木色 #A68064
 74深藏青色 #2F2F4F
 75海军蓝 #23238E 76霓虹篮 #4D4DFF
 77霓虹粉红 #FF6EC7 78新深藏青色 #00009C 79新棕褐色 #EBC79E
 80暗金黄色 #CFB53B 81橙色 #FF7F00 82橙红色 #FF2400
 83淡紫色 #DB70DB 84浅绿色 #8FBC8F 85粉红色 #BC8F8F
  86李子色 #EAADEA
 87石英色 #D9D9F3
 88艳蓝色 #5959AB
 89鲑鱼色 #6F4242 90猩红色 #BC1717 91海绿色 #238E68
92半甜巧克力色 #6B4226 93赭色 #8E6B23 94银色 #E6E8FA
 95天蓝 #3299CC
 96石板蓝 #007FFF 97艳粉红色 #FF1CAE
 98春绿色 #00FF7F
 99钢蓝色 #236B8E 100亮天蓝色 #38B0DE
 101棕褐色 #DB9370
 102紫红色 #D8BFD8
 103石板蓝色 #ADEAEA
 104浓深棕色 #5C4033 105淡浅灰色 #CDCDCD 106紫罗兰色 #4F2F4F
 
107紫罗兰红色 #CC3299
 108麦黄色#D8D8BF 109黄绿色 #99CC32
   
   
   
   
 

<think>嗯,用户的问题是关于face_recognition库中face_encodings函数抛出异常,特别是compute_face_descriptor错误的原因和解决方法。首先,我需要回忆一下这个库的结构。face_recognition库是基于dlib的,所以可能底层调用了dlib的相关函数,比如compute_face_descriptor。 用户提到的错误可能发生在调用face_encodings时,而这个函数内部可能调用了dlib的compute_face_descriptor。所以,我需要先确认这两个函数之间的关系。查阅文档的话,face_encodings函数确实封装了dlib的人脸检测和特征编码过程,而compute_face_descriptor是dlib中的函数,用于生成人脸描述符。 接下来,考虑可能的错误原因。首先,输入的图像是否有问题?比如,图像路径是否正确,图像是否损坏,或者图像是否为空。如果图像无法正确加载,会导致检测不到人脸,从而在后续处理中出错。例如,用户提供的代码示例中使用了cv2.imread读取图像,如果路径错误,image会是None,导致后续处理出错。 然后,模型文件是否正确加载?dlib需要预训练的模型文件,比如shape_predictor和face_recognition模型。如果这些文件的路径不正确,或者文件损坏,就会在初始化检测器或预测器时出错。比如,用户代码中引用了'shape_predictor_68_face_landmarks.dat'和'dlib_face_recognition_resnet_model_v1.dat',如果这些文件不在当前目录或指定路径下,就会报错。 另外,人脸检测失败也是一个可能的原因。如果图像中没有检测到人脸,那么后续的landmarks预测和特征编码就会失败。这时候需要检查检测器返回的faces是否为空。用户可能在处理某些图像时,人脸未被正确检测到,导致访问空对象时抛出异常。 还有可能的问题包括OpenCV和dlib的版本兼容性,或者图像的颜色空间问题。例如,dlib的人脸检测器通常需要灰度图像,而用户代码中确实将图像转换为灰度,但如果用户在使用其他方式处理图像时没有正确转换,也可能导致问题。 此外,异常处理是否得当?用户是否在代码中添加了try-except块来捕获可能的异常,并输出更详细的错误信息?例如,捕获dlib的内部错误,或者图像处理的错误,从而更容易定位问题。 解决方案方面,可能需要逐步排查:检查图像路径和有效性,确认模型文件存在且正确,确保检测到人脸,检查图像格式和颜色空间,处理异常情况,以及验证库的版本兼容性。比如,用户可能没有正确安装dlib或者face_recognition库,或者版本过旧导致某些函数不兼容。 还有可能,用户的环境配置有问题,比如缺少必要的依赖库,或者CUDA版本不匹配(如果使用GPU加速的话)。这时候需要检查安装步骤是否正确,或者尝试重新安装库。 最后,参考用户提供的引用,其中有一个是使用dlib实现人脸识别的示例代码,这可能帮助用户对照自己的代码,找出可能的差异或错误。例如,用户是否正确调用了predictor和facerec模型,是否正确处理了检测到的人脸区域等。</think>关于face_recognition库中$face\\_encodings$函数抛出异常的解决方案分析如下: ### 一、错误原因分析 1. **图像输入问题** - 无效图像路径或损坏的图片文件 - 非标准图像格式(如16位色深图片) - 空图像或零尺寸图像传入函数 2. **模型加载异常** - 预训练模型文件缺失或路径错误(如$shape\\_predictor\\_68\\_face\\_landmarks.dat$) - 模型文件版本与dlib库不兼容 - 模型文件下载不完整(常见于自定义训练场景) 3. **人脸检测失败** - 图像中未检测到有效人脸区域 - 低分辨率或模糊人脸导致检测失败 - 极端光照条件影响检测效果 4. **库版本兼容性** - dlib与face_recognition版本不匹配 - Python环境缺少C++编译依赖(常见于手动编译安装场景) ### 二、解决方案 #### 1. 基础检查步骤 ```python # 验证图像有效性示例 import cv2 try: img = cv2.imread("test.jpg") assert img is not None, "图像读取失败" assert img.shape[0] > 0 and img.shape[1] > 0, "图像尺寸异常" except Exception as e: print(f"图像检查失败: {str(e)}") ``` #### 2. 模型文件验证 $$ \text{模型完整性校验} = \begin{cases} sha256(shape\_predictor.dat) = 6f...d4 \\ sha256(resnet\_model.dat) = 9a...e7 \end{cases} $$ 建议通过官方渠道重新下载模型文件[^1] #### 3. 增强人脸检测 ```python # 使用多级检测参数优化 detector = dlib.get_frontal_face_detector() # 调整检测参数 faces = detector(image, 1) # 使用采样金字塔层数=1 if len(faces) == 0: faces = detector(image, 0) # 降级检测 ``` #### 4. 异常处理规范 ```python try: encodings = face_recognition.face_encodings(img) except dlib.DLIB_ERROR as e: print(f"dlib底层错误: {str(e)}") except RuntimeError as e: print(f"运行时错误: {str(e)}") ``` ### 三、典型错误对照表 | 错误特征 | 可能原因 | 解决方案 | |---------|---------|---------| |`TypeError: __call__()`| 图像数据格式错误 | 转换图像为numpy数组格式 | |`No faces found`| 未检测到人脸 | 调整检测参数或更换检测算法 | |`Unsupported image type`| 非常规色彩空间 | 转换为BGR/RGB格式 | ### 四、进阶调试建议 1. 使用dlib自带的$image\\_window$调试检测结果 2. 验证CUDA加速是否生效(如使用GPU版本) 3. 测试不同尺寸输入(推荐1280x720以下分辨率)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值