Orc、Parquet 和 Avro 是三种常见的列式存储文件格式。它们各有异同:
-
ORC (Optimized Row Columnar):
- 优点:ORC 文件格式在读取和查询性能方面表现出色,特别适用于大数据环境。它支持高度压缩、分区、列式存储和跳过不必要的数据。
- 缺点:相对于其他格式,如 JSON 或 CSV,ORC 格式可能在可读性方面稍差,因为它更专注于性能和存储效率。
-
Parquet:
- 优点:Parquet 文件格式也支持高度压缩、列式存储和分区,适用于大数据分析。它的跨平台支持使其在不同计算框架中非常流行,如 Apache Spark、Apache Hive 等。
- 缺点:虽然性能良好,但某些情况下可能不如 ORC 格式。
-
Avro:
- 优点:Avro 文件格式着重于数据序列化和架构演化。它的数据结构是自描述的,支持动态类型,适用于复杂数据类型和演化数据模式。
- 缺点:与其他两种格式相比,性能可能较低,因为它不像 ORC 和 Parquet 那样专注于最大限度地提高读取和查询性能。
本文探讨了Orc、Parquet和Avro三种常见列式存储文件格式,比较了它们在性能、压缩、分区等方面的优点及在可读性和适用场景中的差异。Orc注重性能和存储效率,Parquet跨平台流行但可能不如Orc,Avro则强调数据序列化和动态类型,但性能一般。
1117

被折叠的 条评论
为什么被折叠?



