Day2:初步了解Hive

本文介绍了Hive作为Hadoop的数据仓库工具,其基于SQL查询的HQL语言、HDFS架构、优点(如学习成本低、可扩展性等)、缺点(如HQL表达力有限和效率低等),以及与之相关的shell命令和虚拟机使用注意事项。
摘要由CSDN通过智能技术生成

⚫ 概念

Hive是一个基于Hadoop的数据仓库工具;

可以将结构化的数据文件映射为一张数据库表;(相当于Schema)

提供SQL查询功能;

可以将SQL语句转换为MapReduce作业进行运行。


⚫HDFS架构

HDFS Client(客户端):是被设计成适合运行在通用硬件(commodity hardware)上的 Hadoop 的分布式文件系统。

NameNode(管理者):是管理文件系统命名空间的Master(主服务器),用于管理客户端对文件的访问,执行文件系统命名空间操作,如打开,关闭和重命名文件和目录。

DataNode(Slave):通常是群集中每个节点一个,用于存储数据,负责提供来自文件系统客户端的读写请求。NameNode下达命令,DataNode执行实际的操作。如执行块创建,删除和复制。

Secondary NameNode(辅助):辅助后台程序,主要负责与 NameNode 进行通信,定期保存 HDFS 元数据的快照及备份其他 NameNode 中的内容,日常 Standby,当 NameNode 故障时顶替 NameNode 使用。


⚫Hive的优缺点

优点:

  1. 学习成本低:提供了类SQL查询语言HQL,使得熟悉SQL语言的开发人员无需关心细节,可以快速上手。
  2. 海量数据分析:底层是基于海量计算MapReduce实现。
  3. 可扩展性:为超大数据集设计了计算/扩展能力(MR作为计算引擎,HDFS作为存储系统),Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。
  4. 延展性:Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
  5. 良好的容错性:某个数据节点出现问题HQL仍可完成执行。
  6. 统计管理:提供了统一的元数据管理。

缺点:

  1. Hive的HQL表达能力有限
  2. 迭代式算法无法表达.
  3. Hive的效率比较低.
  4. Hive自动生成的MapReduce作业,通常情况下不够智能化.
  5. Hive调优比较困难,粒度较粗.

 ⚫今日学习的shell命令

1)ls命令

功能:显示文件和目录的信息

ls 以默认方式显示当前目录文件列表

ls -a 显示所有文件包括隐藏文件     例如: .file   文件名称前面带小数点为隐藏文件。

ls -l 显示文件属性,包括大小,日期,符号连接,是否可读写及是否可执行

ls -lh 显示文件的大小,以容易理解的格式印出文件大小 (例如 1K 234M2G)*

ls -lt 显示文件,按照修改时间排序

2)cd命令

功能:改名目录

cd dir 切换到当前目录下的dir目录

cd / 切换到根目录

cd .. 切换到到上一级目录

cd ../.. 切换到上二级目录*

cd ~ 切换到用户目录

cd -    返回上一步操作目录*
 


⚫有关虚拟机

能挂起尽量不使用“hutdown -h now (立即关机)”,能使用“hutdown -h now (立即关机)”,尽量不在外边直接关机。

  • 9
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值