53、面向对象设计中对象生命周期的视图集成

面向对象设计中对象生命周期的视图集成

在面向对象设计里,视图集成是一项关键任务,尤其是在处理对象生命周期的不完整视图时。由于外部的异质性,集成过程需要区分不同的情况,下面来详细介绍。

1. 集成过程概述

在集成过程中,由于外部存在异质性,需要区分以下几种情况。这里将视图分别称为 V1 和 V2,视图中考虑的扩展分别称为 E1 和 E2。
- 相同扩展 :如果两个视图考虑的是相同扩展,那么它们通过特化进行集成。也就是说,集成模式是 V1 和 V2 的观察一致特化。在这种情况下,视图可以观察集成模式中对象的处理。不存在扩展异质性需要考虑,而内涵异质性按以下方式处理:
- 粒度冲突通过在最详细级别集成元素来解决。
- 特定于视图的扩展会被集成。
- 特定于视图的替代方案会被省略。
- 不相交扩展 :模式 V1 和 V2 可能定义相同对象类型的视图,但考虑不相交的扩展。不过,它们会包含相应的元素,例如为 E1 和 E2 的所有对象执行的活动。要求集成对象生命周期 V 为扩展 E1∪E2 定义行为。虽然每次只集成两个对象生命周期,但可以通过应用二进制集成策略来集成 n 个对象生命周期。直观地说,所有在至少一个视图中允许的生命周期事件都必须反映在集成对象生命周期中。因此,抽象元素的所有不同细化、所有特定于视图的替代方案以及所有特定于视图的扩展都必须包含在内。由于 V 为 E1 ∪E2(即 E1 和 E2 的超类)定义行为,所以它必须是 V1 和 V2 的观察一致泛化。
- 重叠扩展 :最常见的情况是 E1 和 E2 重叠。这种情况可以简化为

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值