问题描述
试题编号: 201709-2
试题名称: 公共钥匙盒
时间限制: 1.0s
内存限制: 256.0MB
问题描述
有一个学校的老师共用N个教室,按照规定,所有的钥匙都必须放在公共钥匙盒里,老师不能带钥匙回家。每次老师上课前,都从公共钥匙盒里找到自己上课的教室的钥匙去开门,上完课后,再将钥匙放回到钥匙盒中。
钥匙盒一共有N个挂钩,从左到右排成一排,用来挂N个教室的钥匙。一串钥匙没有固定的悬挂位置,但钥匙上有标识,所以老师们不会弄混钥匙。
每次取钥匙的时候,老师们都会找到自己所需要的钥匙将其取走,而不会移动其他钥匙。每次还钥匙的时候,还钥匙的老师会找到最左边的空的挂钩,将钥匙挂在这个挂钩上。如果有多位老师还钥匙,则他们按钥匙编号从小到大的顺序还。如果同一时刻既有老师还钥匙又有老师取钥匙,则老师们会先将钥匙全还回去再取出。
今天开始的时候钥匙是按编号从小到大的顺序放在钥匙盒里的。有K位老师要上课,给出每位老师所需要的钥匙、开始上课的时间和上课的时长,假设下课时间就是还钥匙时间,请问最终钥匙盒里面钥匙的顺序是怎样的?
输入格式
输入的第一行包含两个整数N, K。
接下来K行,每行三个整数w, s, c,分别表示一位老师要使用的钥匙编号、开始上课的时间和上课的时长。可能有多位老师使用同一把钥匙,但是老师使用钥匙的时间不会重叠。
保证输入数据满足输入格式,你不用检查数据合法性。
输出格式
输出一行,包含N个整数,相邻整数间用一个空格分隔,依次表示每个挂钩上挂的钥匙编号。
样例输入
5 2
4 3 3
2 2 7
样例输出
1 4 3 2 5
样例说明
第一位老师从时刻3开始使用4号教室的钥匙,使用3单位时间,所以在时刻6还钥匙。第二位老师从时刻2开始使用钥匙,使用7单位时间,所以在时刻9还钥匙。
每个关键时刻后的钥匙状态如下(X表示空):
时刻2后为1X345;
时刻3后为1X3X5;
时刻6后为143X5;
时刻9后为14325。
样例输入
5 7
1 1 14
3 3 12
1 15 12
2 7 20
3 18 12
4 21 19
5 30 9
样例输出
1 2 3 5 4
评测用例规模与约定
对于30%的评测用例,1 ≤ N, K ≤ 10, 1 ≤ w ≤ N, 1 ≤ s, c ≤ 30;
对于60%的评测用例,1 ≤ N, K ≤ 50,1 ≤ w ≤ N,1 ≤ s ≤ 300,1 ≤ c ≤ 50;
对于所有评测用例,1 ≤ N, K ≤ 1000,1 ≤ w ≤ N,1 ≤ s ≤ 10000,1 ≤ c ≤ 100。
解题思路
- 从输入中读入最后k行的第i行时,程序不能马上执行取钥匙和还钥匙动作。这是因为,后面的某一行给出的取/还钥匙的时刻可能更早。
- 用一个列表key_back_go_list来存储取钥匙或还钥匙动作序列。动作有两种,即取钥匙和还钥匙。取钥匙动作用字符串’in’标识,还钥匙动作用字符串‘out’标识。序列中,每个动作的信息项有3项,分别是钥匙编号、发生时刻和动作标识。对于输入中的最后k行的任一行,都将转换为两个动作。例如,“4 3 3”将转换为“ 4 3 ‘out’ ”和" 4 6 ‘in’ "。
- 用一个列表lockkeys(即数组)存储钥匙悬挂状态。索引为i的元素表示第i+1个挂钩上悬挂的钥匙。如果元素值为h,表示该挂钩上悬挂了编号为h的钥匙。如果该元素值为0,表示没有悬挂钥匙。
- 列表key_back_go_list内的动作需要排序。第一优先顺序是动作发生时刻。第二优先顺序是先还后取,以落实“如果同一时刻既有老师还钥匙又有老师取钥匙,则老师们会先将钥匙全还回去再取出。” 第三优先顺序是按钥匙编号从小到大排序,以落实“如果有多位老师还钥匙,则他们按钥匙编号从小到大的顺序还。”
- 取钥匙的过程是遍历列表lockkeys,找到编号为key_no的钥匙,假设在第m位挂钩上找到它,那么把第m位挂钩的元素值设为0。下面的代码中,用key_out函数封装了取钥匙的过程。
- 还钥匙的过程是遍历列表lockkeys,找到第一个空的挂钩p,挂钩p的元素值设为key_no。下面的代码中,用key_in函数封装了还钥匙过程。
参考答案
#把编号为key_no的钥匙放回公共钥匙盒lockkeys
def key_in(lockkeys, key_no):
for i in range(len(lockkeys)):
if lockkeys[i] == NOT_HERE:
lockkeys[i] = key_no
break
return lockkeys
#从公共钥匙盒lockkeys中取走编号为key_no的钥匙
def key_out(lockkeys, key_no):
for i in range(len(lockkeys)):
if lockkeys[i] == key_no:
lockkeys[i] = NOT_HERE
break
return lockkeys
def print_lockkeys(lockkeys):
for k in lockkeys:
print(k, end=' ')
num_key, num_line = input().split()
num_key = int(num_key)
num_line = int(num_line)
key_back_go_list = [] #取/还钥匙动作序列
for i in range(num_line):
lockkey, start, duration = input().split()
lockkey = int(lockkey)
start = int(start)
duration = int(duration)
key_back_go_list.append((lockkey, start, 'out'))
key_back_go_list.append((lockkey, start + duration, 'in')) #取/还钥匙动作序列的元素:(钥匙号,发生时刻,动作类别)
# for item in key_back_go_list:
# print(item[0], item[1], item[2])
#动作序列排序
key_back_go_list.sort(key=lambda item: item[0]) #如果有多位老师还钥匙,则他们按钥匙编号从小到大的顺序还。
key_back_go_list.sort(key=lambda item: item[2]) #如果同一时刻既有老师还钥匙又有老师取钥匙,则老师们会先将钥匙全还回去再取出。
key_back_go_list.sort(key=lambda item: item[1]) #按时刻从早到晚排序
# for item in key_back_go_list:
# print(item[0], item[1], item[2])
lockkeys = list(range(1, num_key + 1))
NOT_HERE = 0
for item in key_back_go_list:
if item[2] == 'in':
lockkeys = key_in(lockkeys, item[0]) #取钥匙,改变钥匙盒的状态
# print_lockkeys(lockkeys)
else:
lockkeys = key_out(lockkeys, item[0]) #还钥匙,改变钥匙盒的状态
# print_lockkeys(lockkeys)
# print()
print_lockkeys(lockkeys)
测试用例
-
题目描述中给出的第一组测试用例覆盖的情形是:样例输入中的第3行的取钥匙动作早于第2行的取钥匙动作。
-
题目描述中给出的第二组测试用例覆盖的情形是:(1)多位老师同一时刻还钥匙。(2)同一时刻,既有取钥匙,又有还钥匙。(3)同一时刻,还的钥匙和取的钥匙是同一枚。
-
N=1的边界情形。
样例输入
1 1
1 5 5
样例输出
1 -
K=1的边界情形。
样例输入
1 1
1 5 5
样例输出
1 -
验证“如果(同一时刻)有多位老师还钥匙,则他们按钥匙编号从小到大的顺序还。”做到与否。
样例输入
3 3
1 2 4
3 1 5
2 3 3
样例输出
1 2 3 -
验证“如果同一时刻既有老师还钥匙又有老师取钥匙,则老师们会先将钥匙全还回去再取出。”做到与否。
样例输入
3 5
1 2 4
3 1 5
2 3 3
1 6 9
3 6 3
样例输出
3 2 1
小结
- 解答本题的关键点是:把输入中的第2行到第K+1行的每一行分解为取钥匙和还钥匙两个动作,存入key_back_go_list序列中,每个元素包含3项:<钥匙编号,发生时刻,动作类别>。而后,按发生时刻为第一优先,动作类别为第二优先,钥匙编号为第三优先排序。最后,按序处理key_back_go_list序列中的每一个动作。
- 题目描述给出的两组测试用例跑通过了的话,基本证明了程序的正确性。N=1或K=1的边界情形验证一下是必要的。而上面“测试用例”一节的第5,6组测试用例,是为了更放心一些。