Amr has got a large array of size n. Amr doesn't like large arrays so he intends to make it smaller.
Amr doesn't care about anything in the array except the beauty of it. The beauty of the array is defined to be the maximum number of times that some number occurs in this array. He wants to choose the smallest subsegment of this array such that the beauty of it will be the same as the original array.
Help Amr by choosing the smallest subsegment possible.
The first line contains one number n (1 ≤ n ≤ 105), the size of the array.
The second line contains n integers ai (1 ≤ ai ≤ 106), representing elements of the array.
Output two integers l, r (1 ≤ l ≤ r ≤ n), the beginning and the end of the subsegment chosen respectively.
If there are several possible answers you may output any of them.
5 1 1 2 2 1
1 5
5 1 2 2 3 1
2 3
6 1 2 2 1 1 2
1 5
A subsegment B of an array A from l to r is an array of size r - l + 1 where Bi = Al + i - 1 for all 1 ≤ i ≤ r - l + 1
题意:给出一个序列,然后找出出现次数最多,但区间占用长度最短的区间左右值。
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define N 1000001
using namespace std;
int n,m;
struct node
{
int x;
int y;
int ans;
int cnt;
}q[1000100];
bool cmp(node a,node b)
{
if(a.cnt == b.cnt)
{
return a.ans < b.ans;
}
return a.cnt > b.cnt;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
int mm;
for(int i=0;i<=N;i++)
{
q[i].cnt = 0;
}
int maxx = 0;
int a;
for(int i=1;i<=n;i++)
{
scanf("%d",&a);
if(mm<a)
{
mm = a;
}
if(q[a].cnt == 0)
{
q[a].x = i;
q[a].y = i;
q[a].ans = 0;
q[a].cnt++;
}
else
{
q[a].cnt++;
q[a].y = i;
q[a].ans = q[a].y - q[a].x;
}
if(maxx<q[a].cnt)
{
maxx = q[a].cnt;
}
}
sort(q,q+N,cmp);
printf("%d %d\n",q[0].x,q[0].y);
}
return 0;
}