量子与经典的完美融合:混合架构探索
1. 混合架构概述
混合架构是将经典模型与量子模型结合在一起,并作为一个整体进行训练的模型。具体来说,我们主要探讨的是将量子神经网络与经典神经网络相结合的混合量子神经网络(Hybrid QNN)。
1.1 混合量子神经网络的定义
混合 QNN 是指在经典神经网络中,将一个或多个层替换为量子层。这些量子层接收前一层的输出作为输入,并将自身的输出传递给下一层。如果没有下一层,量子层的输出就是网络的输出;如果没有前一层,量子网络的输入就是模型的输入。
1.2 构建示例
下面是一个简单的混合 QNN 构建示例:
1. 接收 16 个经典输入。
2. 将输入传递给一个具有 8 个神经元的经典层,并使用 sigmoid 激活函数。
3. 添加一个量子层,该量子层接收前一层的 8 个输出作为输入。例如,使用一个具有 3 个 qubits 的 QNN 进行幅度编码,输出可以是前两个 qubits 在计算基上的期望值,返回两个数值。
4. 最后,添加一个具有单个神经元的经典层,使用 sigmoid 激活函数,接收量子层的两个输出。
1.3 混合架构的优势
在处理分类任务时,由于当前量子硬件和模拟器的限制,我们通常需要对数据进行降维处理。混合 QNN 可以将经典神经网络的数据降维功能与量子神经网络的分类功能结合起来。通过将经典层用于数据降维,量子层用于分类,并将整个网络作为一个整体进行训练,有望使模型同时完成这两项任务,并且可能比分别训练经典编码器和量子分类器取得更好的效果。
超级会员免费看
订阅专栏 解锁全文
438

被折叠的 条评论
为什么被折叠?



