庞果网题目:
子序列的定义:对于一个序列a=a[1],a[2],......a[n],则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。 例如:4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。 对于给出序列a,有些子序列可能是相同的,这里只算做1个,要求输出a的不同子序列的数量。 输入: 长度为n的数组1<=n<=100,数组元素0<=a[i]<=110 输出:子序列 的个数对1000000007取余数的结果(由于答案比较大,输出Mod 1000000007的结果即可)。
还是靠动态规划:
设F[k]为前K个数的子序列数目,则F[0]=1;
F[k]与F[k-1]有什么关系呢?
例如序列{0,1,2,3},
k=2时的子序列有:0 1 2 01 02 12 012
k=3时的子序列有:0 1 2 01 02 12 012
0(3) 1(3) 2(3) 01(3) 02(3) 12(3) 012(3) 3
即F[k]=2*F[k-1]+1
如果考虑重复呢?
例如序列{a1...,ar-1,ar...ak},其中ar和ak相同,ar为从ak向前第一个与ak相同的数
则会导致重复的有,a1....ar-1,ar == a1...ar-1,ak (例如 a1 ar==a1 ak,a1 a2 ar ==a1 a2 ak)
重复的次数等于a1...ar-1的子序列数,即F[r-1],同时,ar==ak,所以重复的次数还要加一
所以去重复后应该是
F[k]=2*F[k-1]+1 - F[r-1] - 1
=2*F[k-1]-F[r-1]
至于如果在ar前面还有与ak相同的数,那么重复部分在计算F[r]的时候已经减掉了,所以在计算F[k]时就不必再考虑了。
状态转移方程
F[k]=2*F[k-1]+1; a[r]!=a[k],r=0,1,2.....k-1;
F[k]=2*F[k-1]-F[r-1]; 从k往前搜索,存在使F[r]==F[k]的第一个r并且r>0;
F[k]=2*F[k-1]; 从k往前搜索,存在使F[r]==F[k]的第一个r并且r==0;
代码:
public static int run(int[] a)
{
int N=1000000007;
int[] f= new int[a.length];
f[0]=1;
for(int i=1;i<f.length;i++)
{
//向前检测重复
int r=-1;
for(int j=i-1;j>=0;j--)
{
if(a[i]==a[j])
{
r=j;
break;
}
}
if(r==-1)
{
f[i]=2*f[i-1]+1;
}
else //有重复,减去重复
{
if(r>0)
{
f[i]=2*f[i-1]-f[r-1];
}
else if(r==0)
{
f[i]=2*f[i-1];
}
if(f[i]<0) //取余处理部分
f[i]+=N;
}
if(f[i]>=N) //取余处理部分
{
f[i]=f[i]%N;
}
}
return f[f.length-1];
}