对于scipy.sparse.csr_matrix的理解

本文详细介绍了CSR(Compressed Sparse Row)矩阵格式,这是一种用于存储稀疏矩阵的有效方式,特别适用于高效行切片、矩阵矢量乘法等运算。通过实例展示了如何使用`scipy.sparse.csr_matrix`构造和转换CSR矩阵,包括从二维数组、其他稀疏矩阵以及通过数据、索引和.indptr参数创建。CSR矩阵在科学计算和数据分析中扮演着重要角色。
摘要由CSDN通过智能技术生成

csr_matrix的API reference是这样写的:scipy.sparse.csr_matrix — SciPy v1.7.1 Manualhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#:~:text=csr_matrix%20%28%28data%2C%20indices%2C%20indptr%29%2C%20%5Bshape%3D%20%28M%2C%20N%29%5D%29%20is,matrix%20dimensions%20are%20inferred%20from%20the%20index%20arrays.

csr_matrix(Compressed Sparse Row matrix)压缩稀疏行格式

为什么要使用csr_matrix?

  • 有利于高效运算
  • 有利于高效行切片
  • 有利于快速地矩阵矢量积运算

使用形式

①csr_matrix(D)

其中D是稠密矩阵或者二维向量

②csr_matrix(S)

其中S是其他类型稀疏矩阵

③csr_matrix((M, N), [dtype])

构造一个规模为(M,N)的dtype,其中dtypy是可选的

④csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

其中满足的关系是:a[row_ind[i],col_ind[i]]=data[i],此处a是结果矩阵

⑤csr_matrix((data, indices, indptr), [shape=(M, N)])

其中满足的关系是:对于第i行有:

列索引为indices[indptr[i]:indptr[i+1]]

值为data[indptr[i]:indptr[i+1]]

例子

  • csr_matrix((M, N), [dtype])
>>>import numpy as np
>>>from scipy.sparse import csr_matrix
>>>csr_matrix((3, 4), dtype=np.int8).toarray()##转化为ndarray
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

产生一个3行4列的空矩阵(empty matrix),数据类型为int8

  • csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
>>>row = np.array([0, 0, 1, 2, 2, 2])
>>>col = np.array([0, 2, 2, 0, 1, 2])
>>>data = np.array([1, 2, 3, 4, 5, 6])
>>>csr_matrix((data, (row, col)), shape=(3, 3)).toarray()##转化为ndarray
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

也就是在结果矩阵中的[0,0]放1,在[0,2]中放2,在[1,2]中放3......[2,2]中放6

  • csr_matrix((data, indices, indptr), [shape=(M, N)])
>>>indptr = np.array([0, 2, 3, 6])
>>>indices = np.array([0, 2, 2, 0, 1, 2])
>>>data = np.array([1, 2, 3, 4, 5, 6])
>>>csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()##
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

此处应该是有点难以理解的:

        对于结果矩阵第0行:(此处默认从第0行开始),

        其列索引为:indices[indptr[0]:indptr[0+1]],也就是indices[0:2],也就是indices的第0个+第1个,也就是0和2

        其值为       :data[indptr[0]:indptr[0+1]],也就是data[0:2],也就是data的第一个和第二个,也就是1和2,

好了这下行索引,列索引,值都确定了,对应一下也就是第0行的第0个位置是1,第0行的第2个位置是2

对于结果矩阵第1行:(此处默认从第0行开始),

其列索引为:indices[indptr[1]:indptr[1+1]],也就是indices[2:3],也就是indices的第2个,也就是2

其值为       :data[indptr[1]:indptr[1+1]],也就是data[2:3],也就是data的第2个,也就是3

好了这下行索引,列索引,值都确定了,对应一下也就是第1行的第2个位置是3

结果矩阵的第三行也是一样的道理,此处就不在说了。

如有错漏之处,敬请指正,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yellowTvT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值