free 与 delete

原文地址:http://www.cnblogs.com/zhuyp1015/archive/2012/07/20/2601698.html

1.delete 用于释放 new分配的空间,free 用于释放malloc 分配的空间

2. delete [] 用于释放 new []分配的空间

3. delete 释放空间的时候会调用 相应对象的析构函数

     顺便说一下new在分配空间的时候同时会调用对象的构造函数,对对象进行初始化,使用malloc则只是分配内存

4. 调用free之前需要检查 需要释放的指针是否为空,使用delete 释放内存则不需要检查指针是否为NULL

5. free 和 delete不能混用,也就是说new 分配的内存空间最好不要使用使用free 来释放,malloc 分配的空间也不要使用 delete来释放

     举个例子,<string.h>里通常有个strdup函数,它得到一个char*字符串然后返回其拷贝:

     char *strdup(const char *ps); //返回ps所指的拷贝

     在有些地方,c和c++用的是同一个strdup版本,所以函数内部是用malloc分配内存。这样的话,一些不知情的c++程序员会在调用strdup后忽视了必须对   strdup返回的指针进行free操作。为了防止这一情况,有些地方会专门为c++重写strdup,并在函数内部调用了new,这就要求其调用者记得最后delete。你可以想象,这会导致多么严重的移植性问题,因为代码中strdup以不同的形式在不同的地方之间颠来倒去。

 

补充一个问题,free和delete是如何知道需要释放的内存块的大小的?

     

     在调用malloc或new 分配内存空间的时候,实际分配的空间会比程序员申请的空间要大。实际分配的内存空间前面有一部分空间用于保存所分配内存的大小,校验和等信息。当分配函数返回时,将会返回实际可操作的地址(也就是实际分配空间加上前面用于记录分配信息的空间之后的地址)。下面举个例子,例子通过破坏 new 返回地址的前面四个字节的数据导致内存空间释放出问题。如果不破坏前面的数据则不会出现内存不能释放的情况。

 

 

#include<stdio.h>
#include <new>
#include<iostream>
#include<stdlib.h>
#include <string.h>
 
int main()
{
    int *p = NULL,*p1=NULL;
    int i;
    //p = (int *) malloc(10 * sizeof(int));
    p = newint[10];
 
    memset(p,0,sizeof(int) *10);
    for(i=0;i<10;i++)
        printf("P:%d\t",p[i]);
    printf("addr p: %x\n",p);
 
    *(p-1) =2; //如果不注释掉这一行则程序运行不正确
    *(p+11) =3;
    printf("addr before p: %x\n",p+11);
    printf("%x %x\n",*(p-1),*(p+11));
 
    //free(p);
    delete [] p;
    printf("free successfully! \n");
    return0;
}

 

 

 

 

 

 

当注释了*(p-1) = 2之后运行结果为:

当不注释*(p-1) =2这一行时,结果为:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值