题目链接:https://leetcode.com/problems/kth-smallest-element-in-a-bst/
题目:
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
思路:
1、BST中序遍历的结果是对所有结点值逐渐增大的一个排列。用List保存遍历结果,返回List的第k个元素就行了。时间复杂度是O(n),空间复杂度是O(n)。
2、中序遍历,用计数器记录当前遍历的结点个数,当遍历到k个元素的时候返回该结点的val,无需保存遍历的结点,时间复杂度O(n),空间复杂度O(1)。
3、修改结点数据结构,在TreeNode结点加入leftCount,表示左孩子数目,根据结点的leftCount调整递归分支,它不会遍历所有结点,而是自上而下的路径,所以时间复杂度是O(height of BST)。
算法1:
public int kthSmallest(TreeNode root, int k) {
List<Integer> list = new ArrayList<Integer>();
list = inOrder(root, list);
return list.get(k - 1);
}
public List<Integer> inOrder(TreeNode p, List<Integer> order) {
if (p != null) {
order = inOrder(p.left, order);
order.add(p.val);
order = inOrder(p.right, order);
}
return order;
}
算法2:
int count = 0, result;
public int kthSmallest(TreeNode root, int k) {
if (root != null) {
kthSmallest(root.left, k);
count++;
if (count == k) {
result = root.val;
}
kthSmallest(root.right, k);
}
return result;
}
算法3:
class newTreeNode { // BST
newTreeNode left, right;
int val, leftCount;// 记录左孩子个数
newTreeNode(int val) {
this.val = val;
}
}
int result;
public int kthSmallest(newTreeNode root, int k) {
if (root != null) {
if (root.leftCount + 1 == k) {
result = root.val;
} else if (root.leftCount + 1 < k) {
kthSmallest(root.right, k - (root.leftCount + 1));
} else {
kthSmallest(root.left, k);
}
}
return result;
}