先正向求起点每个位置最长上升子序列,再反向求终点到每个位置的最长上升子序列,则以每个点为中心的序列长度为该点正向上升子序列和反向上升子序列中较小的值
(比如1 2 6 8 7 8第4个位置的正向上升子序列长度为4,反向上升子序列长度为3,则该点的序列长度为2*3+1),如果该点的值比前面的一个值大,则该点的长度为上一个点的长度+1,上诉序列中 2比1 大 第2点的长度是2 同理第4点的长度是4,若该点的值比上一个点的值小,则该点长度等于目前最大的子序列长度,比如第5点的长度为4,(因为上升子序列可以取1,2,6,8),并将前面最接近并大于该点的位置的值改为该点的值,这里将第4个位置上的8改为7.这样以后大于7的值可以继续放在上升序列中,第6个位置的8大于当前最长子序列的最大值7(7将8替换了),所以该位置的长度为5.
参见前辈的代码,用c++直接搞定
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdio>
using namespace std;
int num[10005];
vector<int> vi(10002),vd(10002);
vector<int>::iterator it;
int f1[10005],f2[10005];
int top;
int maxlen;
int main()
{
int n,len;
while(scanf("%d",&n)!=EOF)
{
int i;
maxlen = 0;
top = 0;
vi.clear();
vd.clear();
for(i = 0;i < n;i++)
scanf("%d",&num[i]);
vi.push_back(num[0]);
f1[0] = 1;
for(i = 1;i<n;i++)
{
if(num[i]>vi[top])
{
vi.push_back(num[i]);
top++;
}
else
{
it = lower_bound(vi.begin(),vi.end(),num[i]);
*it = num[i];
}
f1[i] = top+1;
}
f2[n-1] = 1;
vd.push_back(num[n-1]);
top = 0;
for(i = n-1;i>=0;i--)
{
if(num[i]>vd[top])
{
vd.push_back(num[i]);
top++;
}
else
{
it = lower_bound(vd.begin(),vd.end(),num[i]);
*it = num[i];
}
f2[i] = top+1;
}
for(i = 0;i<n;i++)
{
if(f1[i]<f2[i])
{
len = 2*f1[i]-1;
}
else
{
len = 2*f2[i] - 1;
}
if(len > maxlen)
maxlen = len;
}
printf("%d\n",maxlen);
}
}