最大的奇约数

小易是一个数论爱好者,并且对于一个数的奇数约数十分感兴趣。一天小易遇到这样一个问题: 定义函数f(x)为x最大的奇数约数,x为正整数。例如:f(44) = 11.
现在给出一个N,需要求出 f(1) + f(2) + f(3).......f(N)
例如: N = 7
f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7) = 1 + 1 + 3 + 1 + 5 + 3+ 7 = 21
小易计算这个问题遇到了困难,需要你来设计一个算法帮助他。
输入描述:
输入一个整数N (1 ≤ N ≤ 1000000000)


输出描述:
输出一个整数,即为f(1) + f(2) + f(3).......f(N)

输入例子:
7

输出例子:

21
感觉更多的是在玩数字游戏啊

import java.util.Scanner;

public class Main6 {	
	public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNext()) {
            int n = scanner.nextInt();
            System.out.println(sumOfMaxOdd(n));
        }
    }

    /*
     * 奇数的最大约数就是本身。问题就是求所有f(i), i为偶数的和 因为要求的是最大奇约数,所以f(2k) = f(k),所以f(2) + f(4)
     * + ... + f(2k) = f(1) + f(2) + ... + f(k);
     * 
     * sum(n) = sum (n / 2) + 1 + 3 + ... + n - 1 = sum (n/2) + n*n/4(n 为偶数) 
     *        
     *        = sum (n - 1) + n (n为奇数)
     * 
     * 
     */

    public static long sumOfMaxOdd(long n) {
        if (n == 1) {
            return 1;
        }
        if (n % 2 == 0) {
            return sumOfMaxOdd(n / 2) + n * n / 4;
        } else {
            return sumOfMaxOdd(n - 1) + n;
        }
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值