一个古老的话题--关于忙音自动识别

上一节中,yesongldz以近乎玩笑的方式讲述了关于忙音的一般问题。其主要意识有两点:

一,忙音信号是一个通信标准;

二,忙音信号的听觉感受;

本节主要讲述忙音信号的机器自动识别。

 

       忙音信号的频率是450Hz,有一定的发音和静音间隔,国标限定为350毫秒。这个特定的频率和间隔响应特性,让人一听就是“嘟.. .. ..”的声响,音律不高不低,节奏适中。普通人极易判断。

 

       如果让机器来“听”忙音,它怎么来进行判断呢?现实社会当中,有很多的终端交换机、板卡和智能终端设备能够侦听出忙音信号,它是怎样实现的呢?且听我慢慢讲来。

 

       能判断出忙音,人耳靠听,一听便知,而机器则要计算。机器是怎样计算的呢?

 

首先,如果能够由机器来计算,数据不可缺少。而电话线上传递的是模拟电信号,不能直接作为计算的依据。一般都采用模数转换电路,把模拟信号转变为可以计算的数值。这些数值有什么标准特征呢?有,一般采用的是PCM制式,A律或µ律。

 

其次,解压数据。由于A律或µ律是8位压缩数据,你不能直接计算,要将其转换为线性数据。对线性数据,先进行乘积和的形式进行滤波计算,然后按照一定的公式算出能量。

 

再次,将计算出的能量与标准信号的预设能量阀值、信号音间隔进行比较,最终确认出是否忙音。

 

PCM制式每秒钟8K,可以理解为每秒种8000个数据。对每个数据进行转线性,然后滤波,再计算能量。整个忙音判定过程中每秒种需要几十万次的计算,对微处理器的性能要求很高。

 

我们之知以能判断出忙音,是靠耳朵来传递音频,形成听觉感受,然后由大脑来进行判断。 在这里,耳朵相当于一个滤波器,大脑形如一个超级计算机。前文说道,人耳的听觉范围在20Hz20000Hz之间。也就是说,人耳就类似一个20H20000Hz的带通滤波器,小于20Hz和大于20000Hz的音频通通不被大脑所接受。

 

Yesongldz不打算在此处详述具体算法。只介绍几个要点。

 

要点一:计算频率范围选为300~700Hz

 

你以前不是说过标淮信号的频率是450Hz么,计算这么宽干什么?标准与实际,就像理论与实践,哪里有不偏差的! 且不说信号在传输过程中有干扰,就说产生忙音信号的交换吧。局用交换机不可能保证100%的准确,都有+5%~+10%的频偏。至于一般的小交换机,公司或社区的交换机,那就不用更多说了,频率偏差的没谱!350Hz600Hz的忙音我见的多了。

 

要点二:计算的信号音与静音的间隔时间为230~450毫秒之间

 

道理与上条所述一样。标准忙音信号350毫秒发声,350毫秒静音。可有些小交换机送忙音信号居然为230毫秒发声与静音,有些接近500毫秒。更可气的,还有些小交换机,忙音信号与静音信号持续时间不一致,如,忙音300毫秒,静音250毫秒,当然这种情况比较少见。

 

面对市场上这些与标准不符的交换设备你怎么办?总不能造出一个理论上完美而实践上不能使用的自动识别设备吧!面对现实,只好将这两项指标范围放大,放大到技术人员自已简直无法忍受的地步,还要咬牙这样做!下面我们将这样计算的后果罗列出来,让你看到某些实践中的无奈。

 

无奈之一:误判

 

忙音信号所处频段,恰恰是人的发声信号能量比较集中的频段。人也有可能发出忙音的频率,从理论上来讲,必然会有误判。而事实上,因为忙音的频率单一,且有独特的节奏。但从统计上来看,这种几率很小,除非一个经专门受过发声训练的人对着电话“嘟…嘟…嘟…”地说话。

 

加大了频偏响应范围,加大了发声与静音的间隔时间值,就等于默认更多的频率和更多的节奏,增加了误判的几率。事实上,这种误判从单一指标上是大量存在的,在计算时经常出现。一些忙音判断设备之所以运行的很好,是从统计规律上做了手脚。然后统计也带来了一个不太友好的后果—滞后,这就是我要说的第二个无奈之处。

 

无奈之二:滞后

 

计算出一个忙音叫偶然,计算出两个还不敢确定,计算出三个才有点把握。而且必须在相对较短的一段时间内,比如,选定3~5秒之内。超过这段时间就丢弃,重新统计。有的忙音识别设备居然到12声忙音以上才敢确定。想一想,也确属无耐,谁让市场上存在着那么多的与国标不符的交换机,你不总不能强制客户换掉吧,你也更没法预料到线路上会有什么噪音干扰!

 

无奈之三:录下忙音

 

很多自动应答设备带有录音功能,以便留下客户的声音资料。有的是定时,让对方在一个设定的时间范围内把话说完,如果到限定时间还没说完,就粗暴的挂断。有一些比较智能的应答设备,判断忙音信号才挂机。因为设备判断忙音信号需要几秒到十几秒的延期,每个客户的留言音频文件,其有包含了很多的无用的忙音信号,占用了大量的存储空间。

 

为了避免这个问题,高级的录音设备,都有一种回删的功能。在录下数据后,再对音频文件进行一次计算,滤出尾部多余的忙音。具体效果如何,还看技术人员的经验水平及施工现场的运气!

 

“自学习”智能判断是怎么回事?

 

有些时侯,我们会听到某些宣传,“忙音信号智能判断”中还加了“自学习”的概念。其实,所谓的“自学习”,无非就是能够根据施工现场的信号特征来调整一些信号响应参数。这些忙音信号设备不将相关算法做死,而是让你和施工人员根据现场来判断,填入合适的数值。这样效果自然会好一些。

 

好啦,有关忙音信号就说到这里。有人会说,即然忙音信号有这么多弊端,为什么还延用到今天?那是因为制定信号标准的时代,谁会想到几十年后会产生CTI产业,谁会想到会有这么复杂应用的智能产品!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值