证明:在N维欧式空间中,两两互成钝角的非零向量不多于N+1个

证明的方法很简单,在讲证明之前,我们先来看一道题目:

也许不知道这个定理的人,会选择“5个”,这很正常。

答案解析:先取定一单位向量,则与它成钝角的向量只能落在某半空间中;从该半空间中取定第二个向量。则与这两个向量都成钝角的向量只能落在某(至多)四分之一空间中。而从这四分之一空间中至多再能取两个互成钝角的向量

如果觉得难理解的话:可以把空间想成八个块,上面四个象限,下面四个象限,这样稍微比较好想象

如果我们需要证明为什么是4个,而不是5个的话,这里需要用到一些线性代数的知识。

下面直接来证明题目的定理:在N维欧式空间中,两两互成钝角的非零向量不多于N+1个

我们知道,在R^{^{^{n}}},最多有n个线性无关的向量。对于 a_{1},a_{2},...,a_{n},a_{n+1} 这n+1个两两互成钝角的向量,存在不全为零的系数k_{1},k_{2},...,k_{n},k_{n+1} 使得: k_{1}a_{1}+k_{2}a_{2}+...+k_{n}a_{n}+k_{n+1}a_{n+1}=0  。

假设:存在一个向量a_{n+2},也跟上面的n+1个向量互成钝角。

那么对于上式,左右两边分别点乘a_{n+2},则得:

k_{1}a_{1}\cdot a_{n+2}+k_{2}a_{2}\cdot a_{n+2}+...+k_{n}a_{n}\cdot a_{n+2}+k_{n+1}a_{n+1}\cdot a_{n+2}=0

向量互成钝角→点积为负,则a_{1}\cdot a_{n+2},a_{2}\cdot a_{n+2},...,a_{n}\cdot a_{n+2},a_{n+1}\cdot a_{n+2}均为负数。

那么k_{1},k_{2},...,k_{n},k_{n+1}这数可分为3类:正的,负的,零。

假设k_{1},k_{2},...,k_{i}为正的,k_{i+1},k_{i+2},...,k_{j}为负的,k_{j+1},k_{j+2},...,k_{n}为零。为零的系数我们不管的,我们把正的放在左边,负的放在右边,则得:

k_{1}a_{1}+k_{2}a_{2}+...+k_{i}a_{i}=-k_{i+1}a_{i+1}-k_{i+2}a_{i+2}-...-k_{j}a_{j}=V

那么:

V\cdot V=(k_{1}a_{1}+k_{2}a_{2}+...+k_{i}a_{i})\cdot (-k_{i+1}a_{i+1}-k_{i+2}a_{i+2}-...-k_{j}a_{j})

=-k_{1}k_{i+1}a_{1}\cdot a_{i+1}-k_{1}k_{i+2}a_{1}\cdot a_{i+2}-...

因为k_{1}k_{i+1},k_{1}k_{i+2},...为负数,而a_{1}\cdot a_{i+1},a_{1}\cdot a_{i+2},...也为负数,所以V\cdot V<0,这很明显是不符合常理的。

那么假设不成立,题目所示命题从而得证。

世界地图矢量数据可以通过多种网站进行下载。以下是一些提供免费下载世界地图矢量数据的网站: 1. Open Street Map (https://www.openstreetmap.org/): 这个网站可以根据输入的经纬度或手动选定范围来导出目标区域的矢量图。导出的数据格式为osm格式,但只支持矩形范围的地图下载。 2. Geofabrik (http://download.geofabrik.de/): Geofabrik提供按洲际和国家快速下载全国范围的地图数据数据格式支持shape文件格式,包含多个独立图层,如道路、建筑、水域、交通、土地利用分类、自然景观等。数据每天更新一次。 3. bbbike (https://download.bbbike.org/osm/): bbbike提供全球主要的200多个城市的地图数据下载,也可以按照bbox进行下载。该网站还提供全球数据数据格式种类齐全,包括geojson、shp等。 4. GADM (https://gadm.org/index.html): GADM提供按国家或全球下载地图数据的服务。该网站提供多种格式的数据下载。 5. L7 AntV (https://l7.antv.antgroup.com/custom/tools/worldmap): L7 AntV是一个提供标准世界地图矢量数据免费下载的网站。支持多种数据格式下载,包括GeoJSON、KML、JSON、TopJSON、CSV和高清SVG格式等。可以下载中国省、市、县的矢量边界和世界各个国家的矢量边界数据。 以上这些网站都提供了世界地图矢量数据免费下载服务,你可以根据自己的需求选择合适的网站进行下载
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值