05-树7 堆中的路径   (25分)

2 篇文章 0 订阅

将一系列给定数字插入一个初始为空的小顶堆H[]。随后对任意给定的下标i,打印从H[i]到根结点的路径。

输入格式:

每组测试第1行包含2个正整数NNNMMM(≤1000\le 10001000),分别是插入元素的个数、以及需要打印的路径条数。下一行给出区间[-10000, 10000]内的NNN个要被插入一个初始为空的小顶堆的整数。最后一行给出MMM个下标。

输出格式:

对输入中给出的每个下标i,在一行中输出从H[i]到根结点的路径上的数据。数字间以1个空格分隔,行末不得有多余空格。

输入样例:

5 3
46 23 26 24 10
5 4 3

输出样例:

24 23 10
46 23 10
26 10

最小堆的基本操作

#include <stdio.h>
#include <stdlib.h>
#define MINDATA -10001
#define ERROR -1
typedef struct HNode *Heap;
typedef Heap MaxHeap;
typedef Heap MinHeap;
typedef int ElementType;
struct HNode {
	ElementType *Data;
	int Size;
	int Capacity;
};
MinHeap CreateHeap( int MaxSize ) {
	MinHeap H = (MinHeap)malloc(sizeof(struct HNode));
	//因为0位置是哨兵,所以MaxSize+1
	H->Data = (ElementType *)malloc((MaxSize+1) * sizeof(ElementType));
	H->Size = 0;
	H->Capacity = MaxSize;
	H->Data[0] = MINDATA;
	return H;
}
bool IsFull( MinHeap H ){
	return (H->Size == H->Capacity);
}
bool Insert( MinHeap H, ElementType X ) {
	//将元素X插入堆,其中H->Data[0]已经定义未哨兵
	int i;
	if( IsFull(H) ){
		printf("最小堆已满");
		return false;
	}
	i = ++H->Size; //i指向插入后堆中最后一个元素的位置
	for( ; H->Data[i / 2] > X; i /= 2)
		H->Data[i] = H->Data[i / 2];
	H->Data[i] = X;
	return true;
}
int main(){
	int N, M, t, k;
	MinHeap H;
	scanf("%d %d", &N, &M);
	H = CreateHeap(N);
	for(int i = 0; i < N; i++){
		scanf("%d", &t);
		Insert(H, t);
	}
	for(int j = 0; j < M; j++){
		scanf("%d", &k);
		printf("%d", H->Data[k]);
		while(k /= 2){    //一直访问根结点
			printf(" %d", H->Data[k]);
		}
		printf("\n");
	}
	
	system("pause");
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值