人工智能咨询培训老师叶梓 转载标明出处
开发者通常花费约58%的时间在程序理解上,高质量的代码文档在减少这一时间上扮演着重要角色。然而,维护代码文档同样消耗大量的时间、金钱和人力。为了减轻维护代码文档的负担,早期尝试自动文档生成的方法旨在为源代码提供描述性摘要。但是,这些方法在总结化、指导不足和被动更新方面存在显著局限性。清华大学、中国人民大学和西门子公司的研究团队提出了RepoAgent,一个由大模型(LLM)驱动的开源框架,旨在主动生成、维护和更新代码文档。通过定性和定量评估,验证了本方法的有效性,表明RepoAgent在生成高质量的仓库级文档方面表现出色。代码和结果已在GitHub公开访问。

RepoAgent框架

如图2所示RepoAgent方法分三个组成部分:全局结构分析(Global Structure Analysis)、文档生成(Documentation Generation)和文档更新(Documentation Update)。这三个组件不仅可以独立执行,还可以打包成工具钩子(hook),用于各种工具集成目的。当这三个组件协同工作时,RepoAgent能够确保从头开始构建和维护代码仓库的文档,将文档的重要性提升到与代码同等的水平,从而促进团队之间的同步和协作。
全局结构分析
全局结构分析是构建高质量代码文档