CNN卷积神经网络应用于人脸识别(详细流程+代码实现)

CNN卷积神经网络应用于人脸识别(详细流程+代码实现)

作者:wepon   出处: wepon的博客

本文主要讲解将CNN应用于人脸识别的流程,程序基于python+numpy+theano+PIL开发,采用类似LeNet5的CNN模型,应用于olivettifaces人脸数据库,实现人脸识别的功能,模型的误差降到了5%以下。本程序只是个人学习过程的一个toy implement,样本很小,模型随时都会过拟合。

但是,本文意在理清程序开发CNN模型的具体步骤,特别是针对图像识别,从拿到图像数据库,到实现一个针对这个图像数据库的CNN模型,我觉得本文对这些流程的实现具有参考意义。

《本文目录》

一、olivettifaces人脸数据库介绍

二、CNN的基本“构件”(LogisticRegression、HiddenLayer、LeNetConvPoolLayer)

三、组建CNN模型,设置优化算法,应用于Olivetti Faces进行人脸识别

四、训练结果以及参数设置的讨论

五、利用训练好的参数初始化模型

六、一些需要说明的

一、olivettifaces人脸数据库介绍

Olivetti Faces是纽约大学的一个比较小的人脸库,由40个人的400张图片构成,即每个人的人脸图片为10张。每张图片的灰度级为8位,每个像素的灰度大小位于0-255之间,每张图片大小为64×64。如下图,这个图片大小是1190*942,一共有20*20张人脸,故每张人脸大小是(1190/20)*(942/20)即57*47=2679:

本文所用的训练数据就是这张图片,400个样本,40个类别,乍一看样本好像比较小,用CNN效果会好吗?先别下结论,请往下看。

要运行CNN算法,这张图片必须先转化为数组(或者说矩阵),这个用到python的图像库PIL,几行代码就可以搞定,具体的方法我之前刚好写过一篇文章,也是用这张图,考虑到文章冗长,就不复制过来了,链接在此:《利用Python PIL、cPickle读取和保存图像数据库》

训练机器学习算法,我们一般将原始数据分成训练数据(training_set)、验证数据(validation_set)、测试数据(testing_set)。本程序将training_set、validation_set、testing_set分别设置为320、40、40个样本。它们的label为0~39,对应40个不同的人。这部分的代码如下:

[python]

  1. “””
  2. 加载图像数据的函数,dataset_path即图像olivettifaces的路径
  3. 加载olivettifaces后,划分为train_data,valid_data,test_data三个数据集
  4. 函数返回train_data,valid_data,test_data以及对应的label
  5. “””
  6. def load_data(dataset_path):
  7.     img = Image.open(dataset_path)
  8.     img_ndarray = numpy.asarray(img, dtype=‘float64′)/256
  9.     faces=numpy.empty((400,2679))
  10.     for row in range(20):
  11.        for column in range(20):
  12.         faces[row*20+column]=numpy.ndarray.flatten(img_ndarray [row*57:(row+1)*57,column*47:(column+1)*47])
  13.     label=numpy.empty(400)
  14.     for i in range(40):
  15.     label[i*10:i*10+10]=i
  16.     label=label.astype(numpy.int)
  17.     #分成训练集、验证集、测试集,大小如下
  18.     train_data=numpy.empty((320,2679))
  19.     train_label=numpy.empty(320)
  20.     valid_data=numpy.empty((40,2679))
  21.     valid_label=numpy.empty(40)
  22.     test_data=numpy.empty((40,2679))
  23.     test_label=numpy.empty(40)
  24.     for i in range(40):
  25.     train_data[i*8:i*8+8]=faces[i*10:i*10+8]
  26.     train_label[i*8:i*8+8]=label[i*10:i*10+8]
  27.     valid_data[i]=faces[i*10+8]
  28.     valid_label[i]=label[i*10+8]
  29.     test_data[i]=faces[i*10+9]
  30.     test_label[i]=label[i*10+9]
  31.     #将数据集定义成shared类型,才能将数据复制进GPU,利用GPU加速程序。
  32.     def shared_dataset(data_x, data_y, borrow=True):
  33.         shared_x = theano.shared(numpy.asarray(data_x,
  34.                                                dtype=theano.config.floatX),
  35.                                  borrow=borrow)
  36.         shared_y = theano.shared(numpy.asarray(data_y,
  37.                                                dtype=theano.config.floatX),
  38.                                  borrow=borrow)
  39.         return shared_x, T.cast(shared_y, ‘int32′)
  40.     train_set_x, train_set_y = shared_dataset(train_data,train_label)
  41.     valid_set_x, valid_set_y = shared_dataset(valid_data,valid_label)
  42.     test_set_x, test_set_y = shared_dataset(test_data,test_label)
  43.     rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
  44.             (test_set_x, test_set_y)]
  45.     return rval

 

二、CNN的基本“构件”(LogisticRegression、HiddenLayer、LeNetConvPoolLayer)

卷积神经网络(CNN)的基本结构就是输入层、卷积层(conv)、子采样层(pooling)、全连接层、输出层(分类器)。  卷积层+子采样层一般都会有若干个,本程序实现的CNN模型参考LeNet5,有两个“卷积+子采样层”LeNetConvPoolLayer。全连接层相当于MLP(多层感知机)中的隐含层HiddenLayer。输出层即分类器,一般采用softmax回归(也有人直接叫逻辑回归,其实就是多类别的logistics regression),本程序也直接用LogisticRegression表示。
总结起来,要组建CNN模型,必须先定义LeNetConvPoolLayer、HiddenLayer、LogisticRegression这三种layer,这一点在我上一篇文章介绍CNN算法时讲得很详细,包括代码注解,因为太冗长,这里给出链接: 《DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解》

代码太长,就不贴具体的了,只给出框架,具体可以下载我的代码看看:

[python]
  1. #分类器,即CNN最后一层,采用逻辑回归(softmax)
  2. class LogisticRegression(object):
  3.     def __init__(self, input, n_in, n_out):
  4.         self.W = ….
  5.         self.b = ….
  6.         self.p_y_given_x = …
  7.         self.y_pred = …
  8.         self.params = …
  9.     def negative_log_likelihood(self, y):
  10.     def errors(self, y):
  11. #全连接层,分类器前一层
  12. class HiddenLayer(object):
  13.     def __init__(self, rng, input, n_in, n_out, W=None, b=None,activation=T.tanh):
  14.         self.input = input
  15.         self.W = …
  16.         self.b = …
  17.         lin_output = …
  18.         self.params = [self.W, self.b]
  19. #卷积+采样层(conv+maxpooling)
  20. class LeNetConvPoolLayer(object):
  21.     def __init__(self, rng, input, filter_shape, image_shape, poolsize=(22)):
  22.         self.input = input
  23.         self.W = …
  24.         self.b = …
  25.         # 卷积
  26.         conv_out = …
  27.         # 子采样
  28.         pooled_out =…
  29.         self.output = …
  30.         self.params = [self.W, self.b]

三、组建CNN模型,设置优化算法,应用于Olivetti Faces进行人脸识别

上面定义好了CNN的几个基本“构件”,现在我们使用这些构件来组建CNN模型,本程序的CNN模型参考LeNet5,具体为:input+layer0(LeNetConvPoolLayer)+layer1(LeNetConvPoolLayer)+layer2(HiddenLayer)+layer3(LogisticRegression)

这是一个串联结构,代码也很好写,直接用第二部分定义好的各种layer去组建就行了,上一layer的输出接下一layer的输入,具体可以看看代码evaluate_olivettifaces函数中的“建立CNN模型”部分。

CNN模型组建好了,就剩下用优化算法求解了,优化算法采用批量随机梯度下降算法(MSGD),所以要先定义MSGD的一些要素,主要包括:代价函数,训练、验证、测试model、参数更新规则(即梯度下降)。这部分的代码在evaluate_olivettifaces函数中的“定义优化算法的一些基本要素”部分。

优化算法的基本要素也定义好了,接下来就要运用人脸图像数据集来训练这个模型了,训练过程有训练步数(n_epoch)的设置,每个epoch会遍历所有的训练数据(training_set),本程序中也就是320个人脸图。还有迭代次数iter,一次迭代遍历一个batch里的所有样本,具体为多少要看所设置的batch_size。关于参数的设定我在下面会讨论。这一部分的代码在evaluate_olivettifaces函数中的“训练CNN阶段”部分。

代码很长,只贴框架,具体可以下载我的代码看看:

[python]

  1. def evaluate_olivettifaces(learning_rate=0.05, n_epochs=200,
  2.                     dataset=‘olivettifaces.gif’,
  3.                     nkerns=[510], batch_size=40):
  4.     #随机数生成器,用于初始化参数….
  5.     #加载数据…..
  6.     #计算各数据集的batch个数….
  7.     #定义几个变量,x代表人脸数据,作为layer0的输入……
  8.     ######################
  9.     #建立CNN模型:
  10.     #input+layer0(LeNetConvPoolLayer)+layer1(LeNetConvPoolLayer)+layer2(HiddenLayer)+layer3(LogisticRegression)
  11.     ######################
  12.     …
  13.     ….
  14.     ……
  15.     #########################
  16.     # 定义优化算法的一些基本要素:代价函数,训练、验证、测试model、参数更新规则(即梯度下降)
  17.     #########################
  18.     …
  19.     ….
  20.     ……
  21.     #########################
  22.     # 训练CNN阶段,寻找最优的参数。
  23.     ########################
  24.     …
  25.     …..
  26.     …….

 

另外,值得一提的是,在训练CNN阶段,我们必须定时地保存模型的参数,这是在训练机器学习算法时一个经常会做的事情,这一部分的详细介绍我之前写过一篇文章《DeepLearning tutorial(2)机器学习算法在训练过程中保存参数》。简单来说,我们要保存CNN模型中layer0、layer1、layer2、layer3的参数,所以在“训练CNN阶段”这部分下面,有一句代码:

[python]

  1. save_params(layer0.params,layer1.params,layer2.params,layer3.params)

这个函数具体定义为:

[python]

  1. #保存训练参数的函数
  2. def save_params(param1,param2,param3,param4):
  3.         import cPickle
  4.         write_file = open(‘params.pkl’‘wb’)
  5.         cPickle.dump(param1, write_file, –1)
  6.         cPickle.dump(param2, write_file, –1)
  7.         cPickle.dump(param3, write_file, –1)
  8.         cPickle.dump(param4, write_file, –1)
  9.         write_file.close()

 

如果在其他算法中,你要保存的参数有五个六个甚至更多,那么改一下这个函数的参数就行啦。

四、训练结果以及参数设置的讨论

ok,上面基本介绍完了CNN模型的构建,以及模型的训练,我将它们的代码都放在train_CNN_olivettifaces.py这个源文件中,将 Olivetti Faces这张图片跟这个代码文件放在同个目录下,运行这个文件,几分钟就可以训练完模型,并且在同个目录下得到一个params.pkl文件,这个文件保存的就是最后的模型的参数,方便你以后直接使用这个模型。
好了,现在讨论一下怎么设置参数,具体来说,程序中可以设置的参数包括:学习速率learning_rate、batch_size、n_epochs、nkerns、poolsize。下面逐一讨论调节它们时对模型的影响。
  • 调节learning_rate

学习速率learning_rate就是运用SGD算法时梯度前面的系数,非常重要,设得太大的话算法可能永远都优化不了,设得太小会使算法优化得太慢,而且可能还会掉入局部最优。可以形象地将learning_rate比喻成走路时步子的大小,想象一下要从一个U形的山谷的一边走到山谷最低点,如果步子特别大,像巨人那么大,那会直接从一边跨到另一边,然后又跨回这边,如此往复。如果太小了,可能你走着走着就掉入了某些小坑,因为山路总是凹凸不平的(局部最优),掉入这些小坑后,如果步子还是不变,就永远走不出那个坑。

好,回到本文的模型,下面是我使用时的记录,固定其他参数,调节learning_rate:
(1)kerns=[20, 50], batch_size=40,poolsize=(2,2),learning_rate=0.1时,validation-error一直是97.5%,没降下来,分析了一下,觉得应该是学习速率太大,跳过了最优。

(2)nkerns=[20, 50], batch_size=40,poolsize=(2,2),learning_rate=0.01时,训练到epoch 60多时,validation-error降到5%,test-error降到15%

(3)nkerns=[20, 50], batch_size=40,poolsize=(2,2),learning_rate=0.05时,训练到epoch 36时,validation-error降到2.5%,test-error降到5%

注意,验证集和测试集都只有40张图片,也就是说只有一两张识别错了,还是不错的,数据集再大点,误差率可以降到更小。最后我将learning_rate设置为0.05。

PS:学习速率应该自适应地减小,是有专门的一些算法的,本程序没有实现这个功能,有时间再研究一下。

 

  • 调节batch_size

因为我们采用minibatch SGD算法来优化,所以是一个batch一个batch地将数据输入CNN模型中,然后计算这个batch的所有样本的平均损失,即代价函数是所有样本的平均。而batch_size就是一个batch的所包含的样本数,显然batch_size将影响到模型的优化程度和速度。

回到本文的模型,首先因为我们train_dataset是320,valid_dataset和test_dataset都是40,所以batch_size最好都是40的因子,也就是能让40整除,比如40、20、10、5、2、1,否则会浪费一些样本,比如设置为30,则320/30=10,余数时20,这20个样本是没被利用的。并且,如果batch_size设置为30,则得出的validation-error和test-error只是30个样本的错误率,并不是全部40个样本的错误率。这是设置batch_size要注意的。特别是样本比较少的时候。
下面是我实验时的记录,固定其他参数,改变batch_size:
batch_size=1、2、5、10、20时,validation-error一直是97.5%,没降下来。我觉得可能是样本类别覆盖率过小,因为我们的数据是按类别排的,每个类别10个样本是连续排在一起的,batch_size等于20时其实只包含了两个类别,这样优化会很慢。

因此最后我将batch_size设为40,也就是valid_dataset和test_dataset的大小了,没办法,原始数据集样本太少了。一般我们都不会让batch_size达到valid_dataset和test_dataset的大小的。

  • 关于n_epochs

n_epochs也就是最大的训练步数,比如设为200,那训练过程最多遍历你的数据集200遍,当遍历了200遍你的dataset时,程序会停止。n_epochs就相当于一个停止程序的控制参数,并不会影响CNN模型的优化程度和速度,只是一个控制程序结束的参数。

  • nkerns=[20, 50]

20表示第一个卷积层的卷积核的个数,50表示第二个卷积层的卷积核的个数。这个我也是瞎调的,暂时没什么经验可以总结。
不过从理论上来说,卷积核的个数其实就代表了特征的个数,你提取的特征越多,可能最后分类就越准。但是,特征太多(卷积核太多),会增加参数的规模,加大了计算复杂度,而且有时候卷积核也不是越多越好,应根据具体的应用对象来确定。所以我觉得,CNN虽号称自动提取特征,免去复杂的特征工程,但是很多参数比如这里的nkerns还是需要去调节的,还是需要一些“人工”的。
下面是我的实验记录,固定batch_size=40,learning_rate=0.05,poolsize=(2,2):

(1)nkerns=[20, 50]时,训练到epoch 36时,validation-error降到2.5%,test-error降到5%

(2)nkerns=[10, 30]时,训练到epoch 46时,validation-error降到5%,test-error降到5%

(3)nkerns=[5, 10]时,训练到epoch 38时,validation-error降到5%,test-error降到7.5%

  • poolsize=(2, 2)

poolzize在本程序中是设置为(2,2),即从一个2*2的区域里maxpooling出1个像素,说白了就算4和像素保留成1个像素。本例程中人脸图像大小是57*47,对这种小图像来说,(2,2)时比较合理的。如果你用的图像比较大,可以把poolsize设的大一点。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++分割线+++++++++++++++++++++++++++++++++++++++++++

上面部分介绍完了CNN模型构建以及模型训练的过程,代码都在train_CNN_olivettifaces.py里面,训练完可以得到一个params.pkl文件,这个文件保存的就是最后的模型的参数,方便你以后直接使用这个模型。以后只需利用这些保存下来的参数来初始化CNN模型,就得到一个可以使用的CNN系统,将人脸图输入这个CNN系统,预测人脸图的类别。

接下来就介绍怎么使用训练好的参数的方法,这部分的代码放在use_CNN_olivettifaces.py文件中。

五、利用训练好的参数初始化模型

在train_CNN_olivettifaces.py中的LeNetConvPoolLayer、HiddenLayer、LogisticRegression是用随机数生成器去随机初始化的,我们将它们定义为可以用参数来初始化的版本,其实很简单,代码只需要做稍微的改动,只需要在LogisticRegression、HiddenLayer、LeNetConvPoolLayer这三个class的__init__()函数中加两个参数params_W,params_b,然后将params_W,params_b赋值给这三个class里的W和b:
[python]
  1. self.W = params_W
  2. self.b = params_b

params_W,params_b就是从params.pkl文件中读取来的,读取的函数:

[python]

  1. #读取之前保存的训练参数
  2. #layer0_params~layer3_params都是包含W和b的,layer*_params[0]是W,layer*_params[1]是b
  3. def load_params(params_file):
  4.     f=open(params_file,‘rb’)
  5.     layer0_params=cPickle.load(f)
  6.     layer1_params=cPickle.load(f)
  7.     layer2_params=cPickle.load(f)
  8.     layer3_params=cPickle.load(f)
  9.     f.close()
  10.     return layer0_params,layer1_params,layer2_params,layer3_params
ok,可以用参数初始化的CNN定义好了,那现在就将需要测试的人脸图输入该CNN,测试其类别。同样的,需要写一个读图像的函数load_data(),代码就不贴了。将图像数据输入,CNN的输出便是该图像的类别,这一部分的代码在use_CNN()函数中,代码很容易看懂。
这一部分还涉及到theano.function的使用,我把一些笔记记在了use_CNN_olivettifaces.py代码的最后,因为跟代码相关,结合代码来看会比较好,所以下面就不讲这部分,有兴趣的看看代码。
最后说说测试的结果,我仍然以整副olivettifaces.gif作为输入,得出其类别后,跟真正的label对比,程序输出被错分的那些图像,运行结果如下:
错了五张,我标了三张:

六、一些需要说明的

首先是本文的严谨性:在文章开头我就说这只是一个toy implement,400张图片根本不适合用DL来做。
当然我写这篇文章,只是为了总结一下这个实现流程,这一点希望对读者也有参考意义。
最后,我的代码都放在这里: github地址,可以下载

  • 20
    点赞
  • 160
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值