裴蜀定理详解

在数论中,裴蜀定理是一个关于最大公约数或者最大公约式的定理。


简介

裴蜀定理(或贝祖定理,Bézout's identity)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约
数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.

证明


如果 a 和 b 有一个是0,那么它们两个的最大公约数是0。这时定理显然成立。
     以下证明a和b都不等于0的情况。不妨设a,b都大于零,a>=b.设(a,b)=d
     对ax+by=d,两边同时除以d,可得(a1)x+(b1)y=1,其中(a1,b1)=1。
     转证(a1)x+(b1)y=1。由带余除法:
     a1=(q1)b+(r1),其中0=<r1<b1
     b1=(q2)(r1)+(r2),其中0=<r2<r1
     (r1)=(q3)(r2)+(r3),其中0=<r3<r2
     .....
     (rn-3)=(qn-1)(rn-2)+(rn-1)
     (rn-2)=(qn)(rn-1)+(rn)
     (rn-1)=(qn+1)(rn)
     于是,有(a1,b1)=(b1,r1)=(r1,r2)=...=(rn-1,rn)=1
     故
     (rn-2)=(xn)(rn-1)+1
     即1=(rn-2)-(xn)(rn-1)
     由倒数第三个式子(rn-1)=(rn-3)-(xn-1)(rn-2)代入上式,得
     1=[1+(xn)(xn-1)](rn-2)-(xn)(rn-3)
     然后用同样的办法用它上面的等式逐个地消去(rn-2),...(r1),
     可证得1=(a1)x+(b1)y。

n个整数之间的裴蜀定理


设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。
特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。证法类似两个数的情况。


  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值