一篇关于渐进式机器学习的文章《IntKB: A Verifiable Interactive Framework for Knowledge Base Completion》
本文摘要:知识库作为许多下游NLP任务的资源基础,存在的一个普遍缺陷是它的不完整性。目前最好的知识库补全框架则缺乏足够的准确性,无法在脱离人工监督的情况下完全自动化的完成知识补全。因此,作为弥补方案,本文提出了IntKB,一种基于问答pipeline的交互式图谱补全框架。该框架的设计面向“人在回路”范式的特性需求:i. 该系统生成的事实与文本片段一致,可由人类直接验证。ii. 该系统设计为可在知识库补全过程中不断学习,因此能够使zero-或者few-shot的初始状态随着时间推移而显著提升性能。iii.




