神奇的口袋
九度 - 1114
时限: 1000MS 内存: 32768KB 64位IO格式: %lld & %llu
问题描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
3
20
20
20
样例输出
3
来源
2007年北京大学计算机研究生机试真题
2^20数据量,不大 ,开始最容易想到穷竭搜索,在取与不取之间搜索。
<cpp>
#include<cstdio>
#include<cstring>
using namespace std;
int a[21],ans,n;
void dfs(int cur,int sum)
{
if(sum==40)
{
ans++;
return;
}
else if(sum>40||cur==n) return;
else
dfs(cur+1,sum);
dfs(cur+1,sum+a[cur]);
}
int main()
{
while(~scanf("%d",&n))
{
ans=0;
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
dfs(0,0);
printf("%d\n",ans);
}
}
递归解法
#include<cstdio>
#include<cstring>
using namespace std;
int a[25],n;
int way(int cur,int sum)
{
if(sum==40)
return 1;
else if(cur>=n||sum>40)
return 0;
return way(cur+1,sum)+way(cur+1,sum+a[cur]);
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
printf("%d\n",way(0,0));
}
}
“ 人人为我“ 动态规划。
主要能够推出这个状态值,dp[i][j]表示前j个物品里凑出体积i的方法数。
#include<cstdio>
#include<cstring>
using namespace std;
int dp[42][25],a[25];//dp[i][j]表示从前j种物品里凑出体积i的方法数
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
dp[0][i]=1;
dp[0][0]=1;
for(int i=1;i<=40;i++)
for(int j=1;j<=n;j++)
{
dp[i][j]=dp[i][j-1];
if(i-a[j]>=0) dp[i][j]+=dp[i-a[j]][j-1];
}
printf("%d\n",dp[40][n]);
}
return 0;
}
还有一种我为人人的思想,用每个input去更新能不能到达40,统计有多少次可以到达40,这里转化成对值域空间-即对容积的可达性进行动态
规划。与j就无关了。所以可以节省空间,转化成一维的数组。
#include<cstdio>
#include<cstring>
using namespace std;
int dp[41],input,n;
int main()
{
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d",&input);
for(int j=40;j>=0;j--)
{
if(j+input<=40)
dp[j+input]+=dp[j];
//如果j有sum[j]种方式可达,则每种方式加上input就可达 j + input
}
dp[input]++;
}
printf("%d\n",dp[40]);
}
return 0;
}