poj2479 Maximum sum(最大子段和变形)

dp 最大子段和的变形

求不相交的最大两个最大子段和,之前对最大子段和都喜欢这样写

for(int i=0;i<n;i++)
{
    sum+=a[i];
   if(sum>0)  res=max(res,sum);
   else sum=0;
}
也没有太多理解,写了这题发现最大子段和 原来定义dp[i] 是以i结尾的最大字段和的大小,最初转移方程代码是
for(int i=0;i<n;i++)
{
   if(dp[i-1]>0) dp[i]=dp[i-1]+a[i];
   else dp[i]=a[i]
}
cout<<(int)*max_element(dp,dp+n)<<endl;
节省一维空间后
for(int i=0;i<n;i++)
{
  if(b>0) b+=a[i];
  else b=a[i];
  sum=max(sum,b);
}

然后这题,就要用到最初状态转移方程,从两个方向计算从某点向左最大子段和,向右最大子段和,在枚举每个位置。

#include <fstream>
#include <iostream>
#include <string>
#include <cstring>
#include <complex>
#include <math.h>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <stdio.h>
#include <stack>
#include <algorithm>
#include <list>
#include <ctime>
#include <ctime>
#include <assert.h>

#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define eps 1e-8
#define M_PI 3.141592653589793

typedef long long ll;
const ll mod=1000000007;
const int inf=99999999;
ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
using namespace std;
int main()
{
    int T;cin>>T;
    int a[50050],left[50010],right[50050];
    while(T--)
    {
        memset(left,0,sizeof(left));
        memset(right,0,sizeof(right));
        int n,res=-inf;scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        left[0]=a[0];
        for(int i=1;i<n;i++)
        {
            if(left[i-1]>=0) left[i]=left[i-1]+a[i];
            else left[i]=a[i];
        }
        for(int i=1;i<n;i++)
            left[i]=max(left[i-1],left[i]);
        right[n-1]=a[n-1];
        for(int i=n-2;i>=0;i--)
        {
            if(right[i+1]>=0) right[i]=right[i+1]+a[i];
            else right[i]=a[i];
        }
        for(int i=n-2;i>=0;i--)
            right[i]=max(right[i+1],right[i]);
        res=-inf;
        for(int i=1;i<n;i++)
            res=max(res,left[i-1]+right[i]);
        printf("%d\n",res);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值