坐标离散化模板

坐标离散化
传入数组对(x1,x2)和范围w,可以将他们离散成小范围。

int compress(int *x1,int *x2,int w){
   vector<int> xs;
   for(int i=0;i<N;i++){
     for(int d=-1;d<=1;d++){
        int tx1=x1[i]+d,tx2=x2[i]+d;
        if(1<=tx1&&tx1<=w) xs.push_back(tx1);
        if(1<=tx2&&tx2<=w) xs.push_back(tx2);
     }
   }
   sort(xs.begin(),xs.end());
   xs.erase(unique(xs.begin(),xs.end()),xs.end());
   for(int i=0;i<N;i++){
     x1[i]=find(xs.begin(),xs.end(),x1[i])-xs.begin();
     x2[i]=find(xs.begin(),xs.end(),x2[i])-xs.begin();
   }
   return xs.size();
}

例如:
WxH的格子上有n条垂直或水平宽度为1的直线。求这些直线将格子划分了多少个区域。

完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
#include<queue>
using namespace std;
const int Maxn=1024;
int W,H,N,x1[Maxn],x2[Maxn],y1[Maxn],y2[Maxn],dir[4][2]={-1,0,0,1,1,0,0,-1};
bool fld[Maxn][Maxn];
int compress(int *x1,int *x2,int w){
   vector<int> xs;
   for(int i=0;i<N;i++){
     for(int d=-1;d<=1;d++){
        int tx1=x1[i]+d,tx2=x2[i]+d;
        if(1<=tx1&&tx1<=w) xs.push_back(tx1);
        if(1<=tx2&&tx2<=w) xs.push_back(tx2);
     }
   }
   sort(xs.begin(),xs.end());
   xs.erase(unique(xs.begin(),xs.end()),xs.end());
   for(int i=0;i<N;i++){
     x1[i]=find(xs.begin(),xs.end(),x1[i])-xs.begin();
     x2[i]=find(xs.begin(),xs.end(),x2[i])-xs.begin();
   }
   return xs.size();
}

void solve(){
   W=compress(x1,x2,W);
   H=compress(y1,y2,H);
   memset(fld,false,sizeof(fld));
   for(int i=0;i<N;i++){
     for(int y=y1[i];y<=y2[i];y++){
        for(int x=x1[i];x<=x2[i];x++){
            fld[y][x]=true;
        }
     }
   }
   int ans=0;
   for(int i=0;i<H;i++){
     for(int j=0;j<W;j++){
        if(fld[i][j]) continue;
        ans++;
        queue<pair<int,int> >que;
        que.push(make_pair(i,j));
        while(!que.empty()){
            int nx=que.front().first,ny=que.front().second;que.pop();

            for(int k=0;k<4;k++){
                int tx=nx+dir[k][0],ty=ny+dir[k][1];
                if(tx<0||ty<0||tx>=H||ty>=W||fld[tx][ty]) continue;
                que.push(make_pair(tx,ty));
                fld[tx][ty]=true;
            }
        }
     }
   }
   printf("%d\n",ans);
}

int main(){
   while(~scanf("%d%d%d",&W,&H,&N)){
      for(int i=0;i<N;i++){
         scanf("%d %d %d %d",&x1[i],&x2[i],&y1[i],&y2[i]);
      }
      solve();
   }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值