题目的意思是倒水,给出的四个数据是第一个水杯,第二个水杯,第三个水杯,和目标水量。
一开始只有第三个水杯是满的,剩下的水杯是空的。
倒水的时候只能把倒水出来的这个杯子倒空,或是倒水进去的杯子倒满。 问最少转移多少水量,使三个杯子中(其中一个)出现目标水量。如果无法出现目标水量,就目标水量减一,还无法出现再减一。
我们需要一个结构体,有四个元素。
第一个水杯的水量 ,第二个水杯的水量,第三个杯子的水量,和转移了多少水量。
然后用bfs() 搜索。
我一开始的思路是,先bfs一开始的目标水量,无法搜到就减一,然后在bfs()。
在bfs()中如果找到目标水量了,就结束输出。
但是,毫无疑问的TLE了好几次,也WA了好几次。
WA是因为这样搜出bfs完,找到的是倒水次数最少时,而题目要求是倒水量最少。
TLE很明显。应该只用一次bfs的,重复bfs这么多次肯定是超时。
所以想明白这两点后就做出来了,首先bfs不需要退出条件,就是应该搜到所要状态都访问过为止(因为最少倒水量,要用的次数我们是不知道的)
然后就是时时更新,你倒完水了,得到了一种新的状态,这时候里面水杯1,水杯2,水杯3的水量肯定是可以达到了,然后记录下达到这些水量所需要的最少倒水量(做法就是没得出一个新状态了,这时候这个状态下达到这三种水量的总倒水量,就是这个状态的里面累加上来的倒水量,如果小于之前记录的达到这三种水量的最小倒水量,就替换,当然如果这个水量是没有出现过的,就直接替换。)
到最后我们得到一个reach数组(前面说到的达到某种水量的最小倒水量)。
初始目标水量是tar 那我们就先看reach[ tar ] 如果是-1 ,说明从没出现过(reach初始是-1,只有水杯中出现过这种水量,才会被赋值)
那就reach[ tar - 1]直到出现不是-1的,就把最小倒水量值输出来,也把下标(这时的目标水量):
AC代码;
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
const int N = 200 + 5;
struct state {
int water[3];
int sum;
}st,st1;
queue<state> q;
int tar;
int vis[N][N];
int reach[N];
int w[3];
void init() {
while(!q.empty())
q.pop();
for (int i = 0 ; i < N ;i++) {
for (int j = 0 ; j < N ; j++) {
vis[i][j] = 0;
}
reach[i] = -1;
}
}
state cmp (state st1 ,int k) {
if(reach[st1.water[k]] < 0)
reach[st1.water[k]] = st1.sum;
else
reach[st1.water[k]] = reach[st1.water[k]] < st1.sum ? reach[st1.water[k]] : st1.sum;
}
void bfs() {
// init();
while(!q.empty())
q.pop();
memset(vis , 0 ,sizeof(vis));
memset(reach ,-1 ,sizeof(reach));
st.water[0] = 0;
st.water[1] = 0;
st.water[2] = w[2];
st.sum = 0;
q.push(st);
reach[0] = reach[st.water[2]] = 0;
vis[0][0] = 1;
while (!q.empty()) {
st = q.front();
q.pop();
for (int i = 0 ;i < 3 ;i++) {
for (int j = 0 ; j < 3 ;j++) {
if (i == j)
continue;
st1 = st;
int m = w[j] - st.water[j] < st.water[i] ? w[j] - st.water[j] : st.water[i] ;
st1.water[i] -= m;
st1.water[j] += m;
while(!vis[st1.water[0]][st1.water[1]] || reach[st1.water[0]] > (st.sum + m) || reach[st1.water[1]] > (st.sum + m) || reach[st1.water[2]] > (st.sum + m))
{
vis[st1.water[0]][st1.water[1]] = 1;
st1.sum = st.sum + m;
for (int k = 0; k < 3;k++) {
cmp(st1,k);
}
q.push(st1);
}
}
}
}
}
int main () {
int T ;
cin >> T;
while (T--) {
cin >> w[0] >> w[1] >> w[2] >>tar;
bfs();
for (int i = tar ; i >= 0 ;i--) {
if(reach[i] >= 0) {
cout << reach[i] <<" " << i <<endl;
break;
}
}
}
return 0;
}