杭电oj-1754-I Hate It

Problem Description
很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。这让很多学生很反感。不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
 
Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
 
Output
对于每一次询问操作,在一行里面输出最高成绩。
 
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
 
Sample Output
5
6
5

9


这是一道单点更新,区间查询的线段树模板题,思路就是建立一个线段树,然后单点进行维护,区间查询其最大值

代码如下:

#include <stdio.h>
#include <string.h>
#include <queue>
#include <iostream>
#include <stdlib.h>
using namespace std;
struct note
{
    int l;
    int r;
    int n;
};
struct note a[800003];
int max(int a,int b)
{
    return a>b?a:b;
}
void build(int l,int r,int k)
{
    int mid;
    if(l==r)
    {
        a[k].l=l;
        a[k].r=r;
        a[k].n=0;
        return;
    }
    a[k].l=l;
    a[k].r=r;
    a[k].n=0;
    mid=(r+l)/2;
    build(l,mid,k*2);
    build(mid+1,r,k*2+1);
}
void update(int n,int r,int k)
{
    int mid;
    if(a[k].l==a[k].r&&a[k].r==r)
    {
        a[k].n=n;
        return;
    }
    mid=(a[k].r+a[k].l)/2;
    if(r<=mid)
        update(n,r,k*2);
    else
        update(n,r,k*2+1);
    a[k].n=max(a[k*2].n,a[k*2+1].n);
}
int seek(int l,int r,int k)
{
    int mid;
    if(a[k].l==l&&r==a[k].r)
        return a[k].n;
    else
    {


        mid=(a[k].l+a[k].r)/2;
        if(r<=mid)
            return seek(l,r,2*k);
        else if(l>mid)
            return seek(l,r,2*k+1);
        else
            return max(seek(l,mid,k*2),seek(mid+1,r,k*2+1));
    }
}
int main()
{
    int n,m;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        build(1,n,1);
        for(int i=1;i<=n;i++)
        {
            int b;
            scanf("%d",&b);
            update(b,i,1);
        }
        char ch;
        int d,c;
        while(m--)
        {
            getchar();
            scanf("%c %d %d",&ch,&d,&c);
            if(ch=='U')
                update(c,d,1);
            else
                printf("%d\n",seek(d,c,1));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值