2021杭电多校第二场 1004——I love counting

题目大意

给你 n n n 个数的数列 v v v,有 m m m 次询问,询问 [ l , r ] [l, r] [l,r] 内满足 v ⨁ a ≤ b v \bigoplus a \leq b vab,不同的 v v v 有多少个

解题思路

莫队分块
分块大小 k = n k = \sqrt n k=n
我们将询问按区间左端点分块,然后排序,先按块号排,如果块号相同按右端点升序排。
然后我们将 v v v 数组分块。

我们如何统计答案呢?我们用桶来统计数是否出现过。
我们对于每一个询问的区间从高位到地位考虑 b b b

我们记录一个变量 s s s 使得我们已经枚举的位满足 s ⨁ a = b s \bigoplus a = b sa=b

在每一位枚举前记录变量 p = s p = s p=s

b b b 的第 i i i 位为 1 1 1
如果 a a a 的这一位为 1 1 1 那么我们让 p p p 这一位为 1 1 1
如果 a a a 的这一位为 0 0 0 那么我们让 s s s 这一位为 0 0 0即可。
此时 p p p 是合法的数的最小值,为了不对答案进行重复统计,我们统计 [ p , p + ( 1 < < i ) − 1 ] [p, p+(1 << i) - 1] [p,p+(1<<i)1] 区间内有多少数即为对答案的贡献。 这是我们可以暴力计算,因为我们对数列 v v v 进行了分块,每次暴力计算复杂度是 O ( n ) O(\sqrt n) O(n )

b b b 的第 i i i 位为 0 0 0 那么我们让 s s s 的这一位与 a a a 相同即可。
这样我们是没有计算 v ⨁ a = b v \bigoplus a = b va=b 的贡献,最后我们加一下即可。

总的复杂度是 O ( m × n ) O(m \times \sqrt n) O(m×n ) 主要是来自分块的后区间移动。

Code

#include <bits/stdc++.h>
#define ll long long
#define qc ios::sync_with_stdio(false); cin.tie(0);cout.tie(0)
#define fi first
#define se second
#define PII pair<int, int>
#define PLL pair<ll, ll>
#define pb push_back
using namespace std;
const int MAXN = 2e5 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
    while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
int a[MAXN];
int n, m;
struct node{
	int l, r, a, b, idx;
	int bl;
	bool operator<(node p) const{
		if(bl != p.bl)
			return bl < p.bl;
		return r < p.r;
	}
};
int k;
int sum[MAXN]; // 前面所有块中出现的次数 桶
int c[MAXN]; // 当前块是否出现 桶
int cnt[MAXN]; // 所有数出现的次数
int ans[MAXN];
void add(int x){
	cnt[x] ++;
	if(cnt[x] == 1){
		sum[x/k]++;
		c[x]++;
	}
}
void del(int x){
	cnt[x]--;
	if(cnt[x] == 0){
		sum[x/k]--;
		c[x]--;
	}
}
int ask(int x){
	int ret = 0;
	for (int i = x / k * k; i <= x; ++i){
	    ret += c[i];
	}
	for (int i = 0; i <= x / k - 1; ++i){
	    ret += sum[i];
	}
	return ret;
}
void solve(){
	cin >> n;
	k = sqrt(n + 1);
	for (int i = 1; i <= n; ++i){
	    cin >> a[i];
	}
	cin >> m;
	vector<node> v;
	for (int i = 1; i <= m; ++i){
		node tmp;
		cin >> tmp.l >> tmp.r >> tmp.a >> tmp.b;
		tmp.idx = i;
		tmp.bl = (tmp.l + k - 1) / k;
		v.pb(tmp);
	}
	sort(v.begin(), v.end());
	int l = 1, r = 0;
	for(auto tmp : v){
		int nl = tmp.l , nr = tmp.r;
		while(nl < l) add(a[--l]);
		while(nl > l) del(a[l++]);
		while(nr < r) del(a[r--]);
		while(nr > r) add(a[++r]);
		int a = tmp.a, b = tmp.b;
		int s = 0;
		for(int i = 20; i >= 0; i--){
			if((b >> i) & 1){
				int p = s;
				if((a >> i) & 1)
					p |= (1 << i);
				else
					s |= (1 << i);
				ans[tmp.idx] += ask(p + (1 << i) - 1) - ask(p-1);
			}
			else
				s |= ((a >> i) & 1) << i;
		}
		ans[tmp.idx] += c[a^b];
	}
	for (int i = 1; i <= m; ++i){
		cout << ans[i] << endl;
	}
}

int main()
{
    #ifdef ONLINE_JUDGE
    #else
       freopen("in.txt", "r", stdin);
       freopen("out.txt", "w", stdout);
    #endif

    qc;
    int T;
    // cin >> T;
    T = 1;
    while(T--){

        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值