题目大意
有
n
n
n 个车站,每个车站开放时间为
[
u
i
,
v
i
]
[u_i, v_i]
[ui,vi],车辆经过第
i
i
i 个车站到第
i
+
1
i+1
i+1个车站的时间为
c
o
s
t
[
i
]
cost[i]
cost[i],如果提前到达一个车站可以等待,如果到达第
i
i
i 个车站的世界超过
v
i
v_i
vi 则不能在这个车站停车,有
q
q
q 次操作
0
l
r
:
0 \ l\ r:
0 l r:能否从
l
l
l 车站出发经停每个车站最后到达
r
r
r 车站,可以输出
Y
e
s
Yes
Yes,否则输出
N
o
No
No
1
p
o
s
c
:
1 \ pos \ c:
1 pos c:将第
p
o
s
pos
pos 车站到下一个车站的时间修改为
c
c
c
2
p
o
s
l
r
:
2 \ pos \ l \ r:
2 pos l r:将第
p
o
s
pos
pos 车站的开放时间改为
[
l
,
r
]
[l ,r]
[l,r]
解题思路
本题主要的思想就是将可以到达的点合并成一个点,这样我们就能快速回答第一个问题,我们用线段树维护,对于2、3操作就是单点修改
线段树节点我们记录四个值
r
e
s
:
res:
res: 能否从区间左端点到达右端点
v
:
v:
v:最晚到达这一站的时间
u
:
u:
u:最早到达下一站的时间
c
:
c:
c:经过这个站点所花费的时间
我们如何合并两个节点呢
r
e
s
:
res:
res:当两个节点的
r
e
s
res
res 都为1,且左节点的最早到达下一站的时间小于右节点最晚到达这一站的时间
v
:
v:
v:
m
i
n
min
min(左节点最晚到这一站的时间, 右节点最晚到达这一站的时间 - 左节点到下一站花费的时间)
u
:
u:
u:
m
a
x
max
max(左节点最早到达下一站的时间 + 右节点到达下一站的花费,右节点最早到达下一站的时间)
c
:
c:
c:左右节点的
c
c
c 相加
Code
#include <bits/stdc++.h>
#define ll long long
#define qc ios::sync_with_stdio(false); cin.tie(0);cout.tie(0)
#define fi first
#define se second
#define PII pair<int, int>
#define PLL pair<ll, ll>
#define pb push_back
using namespace std;
const int MAXN = 2e6 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int u[MAXN], v[MAXN], c[MAXN];
int n;
struct Tree{
// 能否到达 最晚到达 最早到下一站 经过花费时间
int res, v, u, c;
}tree[MAXN << 2];
Tree merge(Tree a, Tree b){
Tree tmp;
tmp.res = a.res & b.res;
if(a.u > b.v){
tmp.res = 0;
}
tmp.c = a.c + b.c;
tmp.v = min(a.v, b.v - a.c);
tmp.u = max(a.u + b.c, b.u);
return tmp;
}
void build(int l, int r, int rt){
if(l == r){
tree[rt].res = 1;
tree[rt].c = c[l];
tree[rt].v = v[l];
tree[rt].u = u[l] + c[l];
return ;
}
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m+1, r, rt << 1 | 1);
tree[rt] = merge(tree[rt << 1], tree[rt << 1 | 1]);
}
Tree query(int L, int R, int l, int r, int rt){
if(L <= l && r <= R)
return tree[rt];
int m= (l + r) >> 1;
if(R <= m)
return query(L, R, l, m, rt << 1);
else if(L > m)
return query(L, R, m+1, r, rt << 1 | 1);
else
return merge(query(L, R, l, m, rt << 1), query(L, R, m+1, r, rt << 1 | 1));
}
void update(int l, int r, int pos, int rt){
if(l == pos && r == pos){
tree[rt].u = u[l] + c[l];
tree[rt].c = c[l];
tree[rt].v = v[l];
tree[rt].res = 1;
return;
}
int m = (l + r) >> 1;
if(pos <= m)
update(l, m, pos, rt << 1);
else
update(m+1, r, pos, rt << 1 | 1);
tree[rt] = merge(tree[rt << 1], tree[rt << 1 | 1]);
}
void solve(){
cin >> n;
for(int i = 1; i <= n; i++)
cin >> u[i];
for(int i = 1; i <= n; i++)
cin >> v[i];
for(int i = 1; i < n; i++)
cin >> c[i];
int q;
build(1, n, 1);
cin >> q;
while(q--){
int t, l, r;
cin >> t;
if(t == 0){
cin >> l >> r;
if(query(l, r, 1, n, 1).res){
cout << "Yes\n";
}
else
cout << "No\n";
}
else if(t == 1){
int pos, w;
cin >> pos >> w;
c[pos] = w;
update(1, n, pos, 1);
}
else if(t == 2){
int pos, l, r;
cin >> pos >> l >> r;
u[pos] = l;
v[pos] = r;
update(1, n, pos, 1);
}
}
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
qc;
int T;
cin >> T;
// T = 1;
while(T--){
solve();
}
return 0;
}