2021杭电多校第三场 1003——Forgiving Matching

题目大意

给你两个字符串,一个长度为 n n n 模式串,一个长度为 m m m 匹配串,由字符 0 0 0 9 9 9 和 通配符 * 组成。问你匹配串在模式串中失配长度不超过 0 , 1 , ⋯   , m 0, 1,\cdots,m 0,1,,m 的字符串一共有多少个。

解题思路

考虑采用 f f t fft fft 来做。
预处理
对于模式串,我们开十个数组(桶),来标记 0 0 0 9 9 9 出现的下标,如果出现了就标为 1 1 1,否则标为 0 0 0,对于通配符 ∗ * ,将 0 0 0 9 9 9 都标为 1 1 1,因为通配符是可以和任何字符匹配的,都能造成贡献。
对于匹配串,首先将匹配串反转,然后和模式串做同样的处理,唯一不同的就是通配符的处理。模式串中的通配符不能将所有位置都标记为 1 1 1,这样的话,如果模式串和匹配串都是通配符会重复计算,所以我们首先统计匹配串中通配符的个数,将通配符的所有位置都标为 0 0 0,最后统计答案的时候加上通配符的个数即可。
对于样例
012 ∗ 4 012*4 0124
1 ∗ 3 1*3 13
模式串预处理的结果为

10010
01010
00110
00010
00011
00000
00000
00000
00000
00000

f f t fft fft 快速处理
定义模式串中的第 i i i 个串为,以第 i i i 个字符开头,长度为 m m m 的连续子串。( i i i 0 0 0 开始)
用模式串中的 0 0 0 数组与匹配串中的 0 0 0 数组做 f f t fft fft 可以得到 f f t fft fft 之后的数组 a a a。其中 a m − i − 1 a_{m-i-1} ami1 即为模式串的第 i i i 个串与匹配串中 0 0 0 匹配的个数。
我们对 0 0 0 9 9 9 每个数组做一次 f f t fft fft ,然后对每一次求和一下 a m − i − 1 a_{m-i-1} ami1,再加上匹配串中通配符的个数,就可得到第 i i i 个模式串和匹配串最大匹配长度。

求答案
最后我们统计一个失配为 0 0 0 到失配为 m m m 的前缀和即可。

反转操作很重要
比如你想知道 a 1 , a 2 , a 3 a_1, a_2, a_3 a1,a2,a3 b 1 , b 2 , b 3 b_1,b_2,b_3 b1,b2,b3有多少个是匹配的,你不反转第二个字符串,你的结果会存在 c 2 , c 4 , c 6 c_2, c_4, c_6 c2,c4,c6 之中,因为 c 2 = a 1 × b 1 , c 4 = a 2 × b 2 , c 6 = a 3 × b 3 c_2 = a_1\times b_1, c_4=a_2\times b_2, c_6 = a_3\times b_3 c2=a1×b1,c4=a2×b2,c6=a3×b3,但是反转之后结果就直接存在 c 4 c_4 c4 之中, 因为 c 4 = a 1 × b 3 + a 2 × b 2 + a 3 × b 1 c_4 = a_1\times b_3 + a_2\times b_2 + a_3\times b_1 c4=a1×b3+a2×b2+a3×b1,这样才是我们 f f t fft fft 的意义所在。

Code

#include <bits/stdc++.h>
#define ll long long
#define qc ios::sync_with_stdio(false); cin.tie(0);cout.tie(0)
#define fi first
#define se second
#define PII pair<int, int>
#define PLL pair<ll, ll>
#define pb push_back
using namespace std;
const int MAXN = 1e6 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
    while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
char s[MAXN],t[MAXN];
int f[10][MAXN];
int g[10][MAXN];
int n, m;
const double PI = acos(-1.0);
struct Complex
{
    double x, y;
    Complex operator+(const Complex &W) const
    {
        return {x + W.x, y + W.y};
    }
    Complex operator-(const Complex &W) const
    {
        return {x - W.x, y - W.y};
    }
    Complex operator*(const Complex &W) const
    {
        return {x * W.x - y * W.y, x * W.y + y * W.x};
    }
};
Complex a[MAXN], b[MAXN];
int R[MAXN];
int tot, bit;
void inif(int n)
{
    tot = 1, bit = 0;
    while (tot <= n)
        tot <<= 1, ++bit;
    for (int i = 0; i <= tot; ++i)
        R[i] = (R[i >> 1] >> 1) | ((i & 1) << (bit - 1));
}
void FFT(Complex f[], int total, int type, int n, int m)
{
    for (int i = 0; i < total; ++i)
        if (i < R[i])
            swap(f[i], f[R[i]]);
    for (int tot = 2; tot <= total; tot <<= 1)
    {
        Complex w1 = {cos(2 * PI / tot), type * sin(2 * PI / tot)};
        for (int pos = 0; pos < total; pos += tot)
        {
            Complex w = {1, 0};
            for (int i = pos; i < pos + tot / 2; ++i, w = w * w1)
            {
                Complex x = f[i];
                Complex y = w * f[i + tot / 2];
                f[i] = x + y;
                f[i + tot / 2] = x - y;
            }
        }
    }
    if (type == -1)
    {
        for (int i = 0; i <= n + m; ++i)
            f[i].x = (int)(f[i].x / tot + 0.5);
    }
}

// 用法
int tong[MAXN];
int ans[MAXN];
int pre[MAXN];
void solve(){
    cin >> n >> m;
	cin >> (s) >> (t);
	for (int i = 0; i < n; ++i){
	    if(s[i] == '*'){
			for (int j = 0; j <= 9; ++j){
			    f[j][i] = 1;
			}
		}
		else
			f[s[i]-'0'][i] = 1;
	}
	int cnt = 0;
	reverse(t, t+m);
	for (int i = 0; i < m; ++i){
	    if(t[i] == '*')
			cnt++;
		else
			g[t[i]-'0'][i] = 1;
	}
	for(int i = 0; i <= 9; ++i){
		for (int j = 0; j < n; ++j){
		    a[j].x = f[i][j];
		}
		for (int j = 0; j < m; ++j){
		    b[j].x = g[i][j];
		}
		inif(n + m);
		FFT(a, tot, 1, n, m), FFT(b, tot, 1, n, m);
		for (int j = 0; j <= tot-1; ++j){
		    a[j] = a[j] * b[j];
		}
		FFT(a, tot, -1, n, m);
		// 开始处理
		for (int j = m-1; j <= n-1; ++j){
		    tong[j] += (int)a[j].x;
		}
		for (int j = 0; j <= tot; ++j){
		    a[j].x = a[j].y = b[j].x = b[j].y = 0;
		}
	}
	for (int i = m-1; i <= n-1; ++i){
	    ans[tong[i] + cnt]++;
	}
	pre[m+1] = 0;
	for(int i = m; i >= 0; --i){
		pre[i] = pre[i+1] + ans[i];
	}
	for(int i = m; i >= 0; i--)
		cout << pre[i] << "\n";
	for(int i = m-1; i <= n-1; i++) tong[i] = 0;
	for (int i = 0; i <= m; ++i){
	    ans[i] = 0;
	}
	for (int i = 0; i <= 9; ++i){
	    for (int j = 0; j <= n; ++j){
	        f[i][j] = g[i][j] = 0;
	    }
	}
}

signed main()
{
    #ifdef ONLINE_JUDGE
    #else
       freopen("in.txt", "r", stdin);
       freopen("out.txt", "w", stdout);
    #endif

    qc;
    int T;
    cin >> T;
    //T = 1;
    while(T--){

        solve();
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值