给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出“Error: Ca != Rb”,其中Ca是A的列数,Rb是B的行数。
输入样例1:2 3 1 2 3 4 5 6 3 4 7 8 9 0 -1 -2 -3 -4 5 6 7 8输出样例1:
2 4 20 22 24 16 53 58 63 28输入样例2:
3 2 38 26 43 -5 0 17 3 2 -11 57 99 68 81 72输出样例2:
Error: 2 != 3思路:
矩阵相乘:第一个矩阵第一行的每个数字,各自乘以第二个矩阵第一列对应位置的数字(注意这里是第二个矩阵的第一列,不是行哦),然后将乘积相加,就可以得到矩阵左上角的那个值。也就是说,结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和。
然后就好办了。
#include<cstdio>
using namespace std;
int main(){
int ra[105][105],rb[105][105];
int r1,c1,r2,c2;
scanf("%d %d",&r1,&c1);
for(int i=0;i<r1;i++){
for(int j=0;j<c1;j++){
scanf("%d",&ra[i][j]);
}
}
scanf("%d %d",&r2,&c2);
for(int i=0;i<r2;i++){
for(int j=0;j<c2;j++){
scanf("%d",&rb[i][j]);
}
}
if(c1!=r2){
printf("Error: %d != %d",c1,r2);
}else{
printf("%d %d\n",r1,c2);
for(int i=0;i<r1;i++){
for(int j=0;j<c2;j++){
int sum=0,n=0;
while(n<c1){
sum+=ra[i][n]*rb[n][j];
n++;
}
if(j!=c2-1)printf("%d ",sum);
else printf("%d\n",sum);
}
}
}
return 0;
}