题目来源:编辑距离(一)_牛客题霸_牛客网 (nowcoder.com)
其实把str1变成str2就三个举措
1.删除2.增添3.替换
例如例一
nowcoder-->now
删除了五个字符。
即,我们可以想想,当str1是空的时候,str2含有元素。那么最少操作数是不是就是str2.size()。
所以我们开始定义一个二维数组
int dp[str1.size()+1][str2.size()+1];//将字符串str1的前i个子串替换为str2前j个子串的最小操作数
dp[0][0] = 0;
其中dp[ i ] [ j ]表示str1的前i个字符和str2的前j个字符变成一样需要的步骤数。
然后我们直接看开始的图像
可能咱们就开始疑惑为什么1,2,3,......,8作为j;1,2,3作为i;
好的,我们来看看,当str2为空,即new这三个字符变成空的
当str1,只有n时,是不是变成str2需要1步
当str1,只有no时,是不是变成str2需要两步
。。。。。
所以一直把nowcoder变成空的时候是不是需要8步;同理当str1为空,str1变成str2需要1,2,3步
所以这个里面就包含了删除和增加
我们从递归方向来理解
即删除:dp[new][nowcoder]=dp[new][nowcode] +1
增添:dp[new][nowcoder]=dp[new][nowcode]+1//就是在str2后面加了一个r然后两边抵消掉了;
替换:就时dp[new][nowcoder]=dp[ne][nowcode]+1//把末尾任意一个变化抵消;
但从递归开始写,就是从末尾往前判断,有大量的重复步骤
我们采用动态规划来写,从0到str1.size();
for(int i=1;i<=str1.size();i++)
dp[i][0] = i;//str1的所有字符全部删除的操作数
for(int j=1;j<=str2.size();j++)
dp[0][j] = j;//str1初始为空,全部添加的操作数
for(int i=1;i<=str1.size();i++){
for(int j=1;j<=str2.size();j++){
if(str1[i-1]==str2[j-1])
dp[i][j] = dp[i-1][j-1];
else{
dp[i][j] = min(dp[i][j-1]+1 , //插入,str1的前i个变成str2的前j-1个,str1末尾再插入str2最后一个字符
min(dp[i-1][j]+1,dp[i-1][j-1]+1));// 分别对应删除(前i-1个已经换成了前j个,str1最后一个不需要了即删除),替换(前i-1个换成前j-1个,str1的最后一个直接替换),
}
}
}
即可能还是不太理解这个图,最重要一点就是dp【i】【j】是str1前i个字符和str2前j个字符变成一样的步骤。
这样从底往上就没有多余的重复计算;
完整代码
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param str1 string字符串
* @param str2 string字符串
* @return int整型
*/
int editDistance(string str1, string str2) {
//if(str2 == "") return str1.size();//str2为空,str1全部删去即可
int dp[str1.size()+1][str2.size()+1];//将字符串str1的前i个子串替换为str2前j个子串的最小操作数
dp[0][0] = 0;
for(int i=1;i<=str1.size();i++)
dp[i][0] = i;//str1的所有字符全部删除的操作数
for(int j=1;j<=str2.size();j++)
dp[0][j] = j;//str1初始为空,全部添加的操作数
for(int i=1;i<=str1.size();i++){
for(int j=1;j<=str2.size();j++){
if(str1[i-1]==str2[j-1])
dp[i][j] = dp[i-1][j-1];
else{
dp[i][j] = min(dp[i][j-1]+1 , //插入,str1的前i个变成str2的前j-1个,str1末尾再插入str2最后一个字符
min(dp[i-1][j]+1,dp[i-1][j-1]+1));// 分别对应删除(前i-1个已经换成了前j个,str1最后一个不需要了即删除),替换(前i-1个换成前j-1个,str1的最后一个直接替换),
}
}
}
return dp[str1.size()][str2.size()];
}
};