动态规划--编辑距离

题目来源:编辑距离(一)_牛客题霸_牛客网 (nowcoder.com)

其实把str1变成str2就三个举措

1.删除2.增添3.替换

例如例一

nowcoder-->now

删除了五个字符。

即,我们可以想想,当str1是空的时候,str2含有元素。那么最少操作数是不是就是str2.size()。

所以我们开始定义一个二维数组

 int dp[str1.size()+1][str2.size()+1];//将字符串str1的前i个子串替换为str2前j个子串的最小操作数
        dp[0][0] = 0;

其中dp[ i ] [ j ]表示str1的前i个字符和str2的前j个字符变成一样需要的步骤数。

然后我们直接看开始的图像

可能咱们就开始疑惑为什么1,2,3,......,8作为j;1,2,3作为i;

好的,我们来看看,当str2为空,即new这三个字符变成空的

当str1,只有n时,是不是变成str2需要1步

当str1,只有no时,是不是变成str2需要两步

。。。。。

所以一直把nowcoder变成空的时候是不是需要8步;同理当str1为空,str1变成str2需要1,2,3步

所以这个里面就包含了删除和增加

我们从递归方向来理解

即删除:dp[new][nowcoder]=dp[new][nowcode] +1

增添:dp[new][nowcoder]=dp[new][nowcode]+1//就是在str2后面加了一个r然后两边抵消掉了;

替换:就时dp[new][nowcoder]=dp[ne][nowcode]+1//把末尾任意一个变化抵消;

但从递归开始写,就是从末尾往前判断,有大量的重复步骤

我们采用动态规划来写,从0到str1.size();

   for(int i=1;i<=str1.size();i++)
            dp[i][0] = i;//str1的所有字符全部删除的操作数
        for(int j=1;j<=str2.size();j++)
            dp[0][j] = j;//str1初始为空,全部添加的操作数
        for(int i=1;i<=str1.size();i++){
            for(int j=1;j<=str2.size();j++){
                if(str1[i-1]==str2[j-1]) 
                    dp[i][j] = dp[i-1][j-1];
                else{
                    dp[i][j] = min(dp[i][j-1]+1 , //插入,str1的前i个变成str2的前j-1个,str1末尾再插入str2最后一个字符
                                   min(dp[i-1][j]+1,dp[i-1][j-1]+1));// 分别对应删除(前i-1个已经换成了前j个,str1最后一个不需要了即删除),替换(前i-1个换成前j-1个,str1的最后一个直接替换),
                }
            }
        }

可能还是不太理解这个图,最重要一点就是dp【i】【j】是str1前i个字符和str2前j个字符变成一样的步骤。

这样从底往上就没有多余的重复计算;

完整代码

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param str1 string字符串 
     * @param str2 string字符串 
     * @return int整型
     */
    int editDistance(string str1, string str2) {
        //if(str2 == "") return str1.size();//str2为空,str1全部删去即可
        int dp[str1.size()+1][str2.size()+1];//将字符串str1的前i个子串替换为str2前j个子串的最小操作数
        dp[0][0] = 0;
        for(int i=1;i<=str1.size();i++)
            dp[i][0] = i;//str1的所有字符全部删除的操作数
        for(int j=1;j<=str2.size();j++)
            dp[0][j] = j;//str1初始为空,全部添加的操作数
        for(int i=1;i<=str1.size();i++){
            for(int j=1;j<=str2.size();j++){
                if(str1[i-1]==str2[j-1]) 
                    dp[i][j] = dp[i-1][j-1];
                else{
                    dp[i][j] = min(dp[i][j-1]+1 , //插入,str1的前i个变成str2的前j-1个,str1末尾再插入str2最后一个字符
                                   min(dp[i-1][j]+1,dp[i-1][j-1]+1));// 分别对应删除(前i-1个已经换成了前j个,str1最后一个不需要了即删除),替换(前i-1个换成前j-1个,str1的最后一个直接替换),
                }
            }
        }
        return dp[str1.size()][str2.size()];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值