- 博客(5)
- 收藏
- 关注
原创 使用networkx常用函数分析连接图
使用networkx常用函数分析图1. Connected components 连通图连通图内任意两点之间都存在path由此函数可以得到一个components的列表nx.connected_components(G)Q:如何得到一个图最大的component?#构建一个generatordef connected_component_subgraphs(G): for c in nx.connected_components(G): yield G.subgraph
2021-04-24 12:22:59 1912
原创 使用Networkx 包对一个图分析与加工
使用Networkx 包对一个图分析与加工第一步 导入图片import networkx as nx%matplotlib inlineimport numpy as npimport matplotlib.pyplot as pltsimple_network = nx.Graph() #实例化一个空图nodes = [1,2,3,4,5] #声明顶点edges = [(1,2),(1,3),(1,4),(2,3),(2,5),(3,4)]#声明边simple_network.add_
2021-04-24 11:08:00 251
原创 Numpy笔记
Numpy Array用法Array 的创建直接声明内容添加新轴一些特殊的array...Arange函数Ones函数Zeros函数Identity函数生成服从随机分布的数字Array的运算自身的统计学feature加减乘除广播性质 BroadcastArray的索引和切片中间用逗号分隔中间用冒号分隔(切片)Array运用逻辑判定取值booleanbatchLogicalArray 的创建直接声明内容如:ax = np.array([1,2,3,4,5,6])ay = np.array([{'a'
2021-04-22 11:59:26 496 1
原创 机器学习入门笔记二
决策树 Decision Tree基本概念Purity优缺点类型示例Wine quality三级目录基本概念画决策树的过程本质上是一个提纯(purify) 的过程。决策树最顶端的最大集合是内容繁杂的,我们通过一步一步的分类把一个复杂的大集合,变成多个相对纯粹的小集合。Purity那么,如何决定一个集合的纯粹度?举个例子,一个袋子里有十个球,这些球可能是红球可能是白球。最纯粹的情况就是十个全是红球,或者十个全是白球,而最不纯粹的情况就是五个红球,五个白球。在这个系统里我们引入一个度量工具:熵(entr
2021-04-20 16:17:39 284
原创 机器学习入门笔记一
机器学习入门笔记 一简单分类算法例子回归示例使用线性回归分辨 Rocks vs. Minesstep1: 导入数据step2:建立train,test 数据集step3: 建立模型step4: 预测结果step5: 评估模型confusion matrixROC(Receiver Order Characteristic)Precision & Recall如何决定theshold的值?简单分类Supervised: Both input and output data are used in
2021-04-19 15:47:30 186
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人