Task 2 数据分析

目的:
1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.
2.了解变量间的相互关系、变量与预测值之间的存在关系。
3.为特征工程做准备

2.2 内容介绍
1、数据总体了解:
1)读取数据集并了解数据集大小,原始特征维度;
2)通过info熟悉数据类型;
3)粗略查看数据集中各特征基本统计量;
2、缺失值和唯一值:
1)查看数据缺失值情况
2)查看唯一值特征情况
3、深入数据-查看数据类型
1)类别型数据
2)数值型数据
①离散数值型数据
②连续数值型数据
4、数据间相关关系
1)特征和特征之间关系
2)特征和目标变量之间关系
5、用pandas_profiling生成数据报告

2.3 代码示例

2.3.1 导入数据分析及可视化过程需要的库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')
import pandas.util.testing as tm

2.3.2 读取文件

data_train = pd.read_csv('./train.csv')
data_test_a = pd.read_csv('./testA.csv')
"""
读取文件的拓展知识
1. pandas读取数据时相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。 
2. TSV与CSV的区别: 
    a. 从名称上即可知道,TSV是用制表符(Tab,'\t')作为字段值的分隔符;CSV是用半角逗号(',')作为字段
值的分隔符; 
    b. Python对TSV文件的支持: Python的csv模块准确的讲应该叫做dsv模块,因为它实际上是支持范式的分隔符分隔值文件(DSV, delimiter-separated values)的。 delimiter参数值默认为半角逗号,即默认将被处理文件视为CSV。当delimiter='\t'时,被处理文件就是 TSV。 
3. 读取文件的部分(适用于文件特别大的场景) 
a. 通过nrows参数,来设置读取文件的前多少行,nrows是一个大于等于0的整数。 
b. 分块读取 
2
"""
data_train_sample = pd.read_csv("./train.csv",nrows=5) #读取前5行
#设置chunksize参数,来控制每次迭代数据的大小
chunker = pd.read_csv("./train.csv",chunksize=5)
for item in chunker:
    print(type(item))
    #<class 'pandas.core.frame.DataFrame'>
    print(len(item))
    #5
<class 'pandas.core.frame.DataFrame'>
5




---------------------------------------------------------------------------

KeyboardInterrupt                         Traceback (most recent call last)

<ipython-input-9-afab1f34becb> in <module>
      1 #设置chunksize参数,来控制每次迭代数据的大小
      2 chunker = pd.read_csv("./train.csv",chunksize=5)
----> 3 for item in chunker:
      4     print(type(item))
      5     #<class 'pandas.core.frame.DataFrame'>


D:\study\anaconda\lib\site-packages\pandas\io\parsers.py in __next__(self)
   1126     def __next__(self):
   1127         try:
-> 1128             return self.get_chunk()
   1129         except StopIteration:
   1130             self.close()


D:\study\anaconda\lib\site-packages\pandas\io\parsers.py in get_chunk(self, size)
   1186                 raise StopIteration
   1187             size = min(size, self.nrows - self._currow)
-> 1188         return self.read(nrows=size)
   1189 
   1190 


D:\study\anaconda\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
   1152     def read(self, nrows=None):
   1153         nrows = _validate_integer("nrows", nrows)
-> 1154         ret = self._engine.read(nrows)
   1155 
   1156         # May alter columns / col_dict


D:\study\anaconda\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
   2057     def read(self, nrows=None):
   2058         try:
-> 2059             data = self._reader.read(nrows)
   2060         except StopIteration:
   2061             if self._first_chunk:


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.read()


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._read_low_memory()


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._read_rows()


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._convert_column_data()


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._convert_tokens()


pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._convert_with_dtype()


D:\study\anaconda\lib\site-packages\pandas\core\dtypes\common.py in is_categorical_dtype(arr_or_dtype)
    676 
    677 
--> 678 def is_categorical_dtype(arr_or_dtype):
    679     """
    680     Check whether an array-like or dtype is of the Categorical dtype.


KeyboardInterrupt: 

2.3.3 总体了解

查看数据集的样本个数和原始特征维度

data_test_a.shape
(200000, 48)
data_train.shape
(800000, 47)
data_train.columns
"""
id 为贷款清单分配的唯一信用证标识
loanAmnt 贷款金额
term 贷款期限(year)
interestRate 贷款利率
installment 分期付款金额
grade 贷款等级
subGrade 贷款等级之子级
employmentTitle 就业职称
employmentLength 就业年限(年)
homeOwnership 借款人在登记时提供的房屋所有权状况
annualIncome 年收入
verificationStatus 验证状态
issueDate 贷款发放的月份
purpose 借款人在贷款申请时的贷款用途类别
postCode 借款人在贷款申请中提供的邮政编码的前3位数字
regionCode 地区编码
dti 债务收入比
delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
openAcc 借款人信用档案中未结信用额度的数量
pubRec 贬损公共记录的数量
pubRecBankruptcies 公开记录清除的数量
revolBal 信贷周转余额合计
revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
totalAcc 借款人信用档案中当前的信用额度总数
initialListStatus 贷款的初始列表状态
applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
earliesCreditLine 借款人最早报告的信用额度开立的月份
title 借款人提供的贷款名称
policyCode 公开可用的策略_代码=1新产品不公开可用的策略_代码=2
n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理
"""
Index(['id', 'loanAmnt', 'term', 'interestRate', 'installment', 'grade',
       'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership',
       'annualIncome', 'verificationStatus', 'issueDate', 'isDefault',
       'purpose', 'postCode', 'regionCode', 'dti', 'delinquency_2years',
       'ficoRangeLow', 'ficoRangeHigh', 'openAcc', 'pubRec',
       'pubRecBankruptcies', 'revolBal', 'revolUtil', 'totalAcc',
       'initialListStatus', 'applicationType', 'earliesCreditLine', 'title',
       'policyCode', 'n0', 'n1', 'n2', 'n2.1', 'n4', 'n5', 'n6', 'n7', 'n8',
       'n9', 'n10', 'n11', 'n12', 'n13', 'n14'],
      dtype='object')
#通过info()来熟悉数据类型
data_train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800000 entries, 0 to 799999
Data columns (total 47 columns):
id                    800000 non-null int64
loanAmnt              800000 non-null float64
term                  800000 non-null int64
interestRate          800000 non-null float64
installment           800000 non-null float64
grade                 800000 non-null object
subGrade              800000 non-null object
employmentTitle       799999 non-null float64
employmentLength      753201 non-null object
homeOwnership         800000 non-null int64
annualIncome          800000 non-null float64
verificationStatus    800000 non-null int64
issueDate             800000 non-null object
isDefault             800000 non-null int64
purpose               800000 non-null int64
postCode              799999 non-null float64
regionCode            800000 non-null int64
dti                   799761 non-null float64
delinquency_2years    800000 non-null float64
ficoRangeLow          800000 non-null float64
ficoRangeHigh         800000 non-null float64
openAcc               800000 non-null float64
pubRec                800000 non-null float64
pubRecBankruptcies    799595 non-null float64
revolBal              800000 non-null float64
revolUtil             799469 non-null float64
totalAcc              800000 non-null float64
initialListStatus     800000 non-null int64
applicationType       800000 non-null int64
earliesCreditLine     800000 non-null object
title                 799999 non-null float64
policyCode            800000 non-null float64
n0                    759730 non-null float64
n1                    759730 non-null float64
n2                    759730 non-null float64
n2.1                  759730 non-null float64
n4                    766761 non-null float64
n5                    759730 non-null float64
n6                    759730 non-null float64
n7                    759730 non-null float64
n8                    759729 non-null float64
n9                    759730 non-null float64
n10                   766761 non-null float64
n11                   730248 non-null float64
n12                   759730 non-null float64
n13                   759730 non-null float64
n14                   759730 non-null float64
dtypes: float64(33), int64(9), object(5)
memory usage: 286.9+ MB
#总体粗略的查看数据集各个特征的一些基本统计量
data_train.describe()
idloanAmntterminterestRateinstallmentemploymentTitlehomeOwnershipannualIncomeverificationStatusisDefault...n5n6n7n8n9n10n11n12n13n14
count800000.000000800000.000000800000.000000800000.000000800000.000000799999.000000800000.0000008.000000e+05800000.000000800000.000000...759730.000000759730.000000759730.000000759729.000000759730.000000766761.000000730248.000000759730.000000759730.000000759730.000000
mean399999.50000014416.8188753.48274513.238391437.94772372005.3517140.6142137.613391e+041.0096830.199513...8.1079378.5759948.28295314.6224885.59234511.6438960.0008150.0033840.0893662.178606
std230940.2520158716.0861780.8558324.765757261.460393106585.6402040.6757496.894751e+040.7827160.399634...4.7992107.4005364.5616898.1246103.2161845.4841040.0300750.0620410.5090691.844377
min0.000000500.0000003.0000005.31000015.6900000.0000000.0000000.000000e+000.0000000.000000...0.0000000.0000000.0000001.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%199999.7500008000.0000003.0000009.750000248.450000427.0000000.0000004.560000e+040.0000000.000000...5.0000004.0000005.0000009.0000003.0000008.0000000.0000000.0000000.0000001.000000
50%399999.50000012000.0000003.00000012.740000375.1350007755.0000001.0000006.500000e+041.0000000.000000...7.0000007.0000007.00000013.0000005.00000011.0000000.0000000.0000000.0000002.000000
75%599999.25000020000.0000003.00000015.990000580.710000117663.5000001.0000009.000000e+042.0000000.000000...11.00000011.00000010.00000019.0000007.00000014.0000000.0000000.0000000.0000003.000000
max799999.00000040000.0000005.00000030.9900001715.420000378351.0000005.0000001.099920e+072.0000001.000000...70.000000132.00000079.000000128.00000045.00000082.0000004.0000004.00000039.00000030.000000

8 rows × 42 columns

data_train.head(3).append(data_train.tail(3))
idloanAmntterminterestRateinstallmentgradesubGradeemploymentTitleemploymentLengthhomeOwnership...n5n6n7n8n9n10n11n12n13n14
0035000.0519.52917.97EE2320.02 years2...9.08.04.012.02.07.00.00.00.02.0
1118000.0518.49461.90DD2219843.05 years0...NaNNaNNaNNaNNaN13.0NaNNaNNaNNaN
2212000.0516.99298.17DD331698.08 years0...0.021.04.05.03.011.00.00.00.04.0
7999977999976000.0313.33203.12CC32582.010+ years1...4.026.04.010.04.05.00.00.01.04.0
79999879999819200.036.92592.14AA4151.010+ years0...10.06.012.022.08.016.00.00.00.05.0
7999997999999000.0311.06294.91BB313.05 years0...3.04.04.08.03.07.00.00.00.02.0

6 rows × 47 columns

2.3.4 查看数据集中特征缺失值,唯一值等

# 查看缺失值
print(f'There are {data_train.isnull().any().sum()} columns in train dataset with missing values.')
There are 22 columns in train dataset with missing values.
#上面得到训练集有22列特征有缺失值,进一步查看缺失特征中缺失率大于50%的特征
have_null_fea_dict = (data_train.isnull().sum()/len(data_train)).to_dict()
fea_null_moreThanHalf = {}
for key,value in have_null_fea_dict.items():
    if value > 0.5:
        fea_null_moreThanHalf[key] = value

fea_null_moreThanHalf
{}
# 具体的查看缺失特征及缺失率
missing = data_train.isnull().sum()/len(data_train)
missing = missing[missing > 0]
missing.sort_values(inplace = True)
missing.plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x17b91d32e48>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dow8dVya-1600357826224)(output_22_1.png)]

"""
纵向了解哪些列存在 “nan”, 并可以把nan的个数打印
主要的目的在于查看某一列nan存在的个数是否真的很大,如果nan存在的过多,说明这一列对label的影响几乎不起作用了,可以考虑删掉。如果缺失值很小一般可以选择填充。
"""

"""
另外可以横向比较,如果在数据集中,某些样本数据的大部分列都是缺失的且样本足够的情况下可以考虑删除。
"""
#查看训练集测试集中特征属性只有一值的特征
one_value_fea = [col for col in data_train.columns if data_train[col].nunique() <= 1]
one_value_fea_test = [col for col in data_test_a.columns if data_test_a[col].nunique() <= 1]
one_value_fea
['policyCode']
one_value_fea_test
['policyCode']
print(f'There are {len(one_value_fea)} columns in train dataset with one unique value.')
print(f'There are {len(one_value_fea_test)} columns in test dataset with one unique value.')
There are 1 columns in train dataset with one unique value.
There are 1 columns in test dataset with one unique value.

2.3.5 查看特征的数值类型有哪些,对象类型有哪些

1、特征一般都是由类别型特征和数值型特征组成,而数值型特征又分为连续型和离散型。
2、类别型特征有时具有非数值关系,有时也具有数值关系。比如‘grade’中的等级A,B,C等,是否只是单纯的分类,还是A优于其他要结合业务判断。
3、数值型特征本是可以直接入模的,但往往风控人员要对其做分箱,转化为WOE编码进而做标准评分卡等操作。从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。

#特征分箱
numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))
numerical_fea
['id',
 'loanAmnt',
 'term',
 'interestRate',
 'installment',
 'employmentTitle',
 'homeOwnership',
 'annualIncome',
 'verificationStatus',
 'isDefault',
 'purpose',
 'postCode',
 'regionCode',
 'dti',
 'delinquency_2years',
 'ficoRangeLow',
 'ficoRangeHigh',
 'openAcc',
 'pubRec',
 'pubRecBankruptcies',
 'revolBal',
 'revolUtil',
 'totalAcc',
 'initialListStatus',
 'applicationType',
 'title',
 'policyCode',
 'n0',
 'n1',
 'n2',
 'n2.1',
 'n4',
 'n5',
 'n6',
 'n7',
 'n8',
 'n9',
 'n10',
 'n11',
 'n12',
 'n13',
 'n14']
category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
data_train.grade
0         E
1         D
2         D
3         A
4         C
         ..
799995    C
799996    A
799997    C
799998    A
799999    B
Name: grade, Length: 800000, dtype: object
# 数值型变量分析,数值型肯定包括连续性变量和离散型变量
# 划分数值型变量中的连续变量和离散型变量

#过滤数值型类别特征
def get_numerical_serial_fea(data,feas):
    numerical_serial_fea = []
    numerical_noserial_fea = []
    for fea in feas:
        temp = data[fea].nunique()
        if temp <= 10:
            numerical_noserial_fea.append(fea)
            continue
        numerical_serial_fea.append(fea)
    return numerical_serial_fea,numerical_noserial_fea
numerical_serial_fea,numerical_noserial_fea = get_numerical_serial_fea(data_train,numerical_fea)
numerical_serial_fea
['id',
 'loanAmnt',
 'interestRate',
 'installment',
 'employmentTitle',
 'annualIncome',
 'purpose',
 'postCode',
 'regionCode',
 'dti',
 'delinquency_2years',
 'ficoRangeLow',
 'ficoRangeHigh',
 'openAcc',
 'pubRec',
 'pubRecBankruptcies',
 'revolBal',
 'revolUtil',
 'totalAcc',
 'title',
 'n0',
 'n1',
 'n2',
 'n2.1',
 'n4',
 'n5',
 'n6',
 'n7',
 'n8',
 'n9',
 'n10',
 'n13',
 'n14']
numerical_noserial_fea
['term',
 'homeOwnership',
 'verificationStatus',
 'isDefault',
 'initialListStatus',
 'applicationType',
 'policyCode',
 'n11',
 'n12']
#数值类别型变量分析
data_train['term'].value_counts() # 离散型变量
3    606902
5    193098
Name: term, dtype: int64
data_train['homeOwnership'].value_counts() # 离散型变量
0    395732
1    317660
2     86309
3       185
5        81
4        33
Name: homeOwnership, dtype: int64
data_train['verificationStatus'].value_counts() # 离散型变量
1    309810
2    248968
0    241222
Name: verificationStatus, dtype: int64
data_train['initialListStatus'].value_counts() # 离散型变量
0    466438
1    333562
Name: initialListStatus, dtype: int64
data_train['applicationType'].value_counts() # 离散型变量
0    784586
1     15414
Name: applicationType, dtype: int64
data_train['policyCode'].value_counts() # 离散型变量,无用,全部一个值
1.0    800000
Name: policyCode, dtype: int64
data_train['n11'].value_counts() # 离散型变量,相差悬殊,用不用再分析
0.0    729682
1.0       540
2.0        24
4.0         1
3.0         1
Name: n11, dtype: int64
data_train['n12'].value_counts() # 离散型变量,相差悬殊,用不用再分析
0.0    757315
1.0      2281
2.0       115
3.0        16
4.0         3
Name: n12, dtype: int64
#数值连续型变量分析
##每个数字特征的分布可视化
f = pd.melt(data_train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f,col="variable", col_wrap=2,sharex=False,sharey=False)
g = g.map(sns.distplot,"value")

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Icr50Mm6-1600357826226)(output_45_0.png)]

"""
1、查看某一个数值型变量的分布,查看变量是否符合正态分布,如果不符合正太分布的变量可以log化后再观察下是否符合正态分布。
2、如果想统一处理一批数据变标准化 必须把这些之前已经正态化的数据剔除
3、正态化的原因:一些情况下正态非正态可以让模型更快的收敛,一些模型要求数据正态(eg. GMM、KNN),保证数据不要过偏态即可,过于偏态可能会影响模型预测结果。
"""
#Ploting Transaction Amount Values Distribution
plt.figure(figsize=(16,12))
plt.suptitle('Transaction Values Distribution', fontsize=22)
plt.subplot(221)
sub_plot_1 = sns.distplot(data_train['loanAmnt'])
sub_plot_1.set_title("loanAmnt Distribution",fontsize=18)
sub_plot_1.set_xlabel("")
sub_plot_1.set_ylabel("Probability",fontsize=15)

plt.subplot(222)
sub_plot_2 = sns.distplot(np.log(data_train['loanAmnt']))
sub_plot_2.set_title("loanAmnt (Log) Distribution", fontsize=18)
sub_plot_2.set_xlabel("")
sub_plot_2.set_ylabel("Probability",fontsize=15)

Text(0, 0.5, 'Probability')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mnKwQBxz-1600357826227)(output_47_1.png)]

# 非数值类别型变量分析
category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
data_train['grade'].value_counts()
B    233690
C    227118
A    139661
D    119453
E     55661
F     19053
G      5364
Name: grade, dtype: int64
data_train['subGrade'].value_counts()
C1    50763
B4    49516
B5    48965
B3    48600
C2    47068
C3    44751
C4    44272
B2    44227
B1    42382
C5    40264
A5    38045
A4    30928
D1    30538
D2    26528
A1    25909
D3    23410
A3    22655
A2    22124
D4    21139
D5    17838
E1    14064
E2    12746
E3    10925
E4     9273
E5     8653
F1     5925
F2     4340
F3     3577
F4     2859
F5     2352
G1     1759
G2     1231
G3      978
G4      751
G5      645
Name: subGrade, dtype: int64
data_train['employmentLength'].value_counts()
10+ years    262753
2 years       72358
< 1 year      64237
3 years       64152
1 year        52489
5 years       50102
4 years       47985
6 years       37254
8 years       36192
7 years       35407
9 years       30272
Name: employmentLength, dtype: int64
data_train['issueDate'].value_counts()
2016-03-01    29066
2015-10-01    25525
2015-07-01    24496
2015-12-01    23245
2014-10-01    21461
              ...  
2007-08-01       23
2007-07-01       21
2008-09-01       19
2007-09-01        7
2007-06-01        1
Name: issueDate, Length: 139, dtype: int64
data_train['earliesCreditLine'].value_counts()
Aug-2001    5567
Sep-2003    5403
Aug-2002    5403
Oct-2001    5258
Aug-2000    5246
            ... 
Oct-2015       1
Jan-1946       1
Aug-1958       1
Mar-1962       1
Jan-1944       1
Name: earliesCreditLine, Length: 720, dtype: int64
data_train['isDefault'].value_counts()
0    640390
1    159610
Name: isDefault, dtype: int64
"""
总结:
上面我们用value_counts()等函数看了特征属性的分布,但是图表是概括原始信息最便捷的方式。
数无形时少直觉。
同一份数据集,在不同的尺度刻画上显示出来的图形反映的规律是不一样的。python将数据转化成图表,但结论是否正确需要由你保证。
"""

2.3.6 变量分布可视化

# 单一变量分布可视化
plt.figure(figsize=(8,8))
sns.barplot(data_train["employmentLength"].value_counts(dropna=False)[:20],
           data_train["employmentLength"].value_counts(dropna=False).keys()[:20])
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4s4U3F5v-1600357826228)(output_58_0.png)]

# 根绝y值不同可视化X某个特征的分布
##首先查看类别型变量再不同y值上的分布
train_loan_fr = data_train.loc[data_train['isDefault']==1]
train_loan_nofr = data_train.loc[data_train['isDefault']==0]

fig,((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2,figsize=(15,8))
train_loan_fr.groupby('grade')['grade'].count().plot(kind='barh',ax=ax1,title='Count of grade fraud')
train_loan_nofr.groupby('grade')['grade'].count().plot(kind='barh',ax=ax2,title='Count of grade non-fraud')
train_loan_fr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh',ax=ax3,title='Count of employmentLength fraud')
train_loan_nofr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh',ax=ax4,title='Count of employmentLength non-fraud')
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FRsoTUoh-1600357826229)(output_59_0.png)]

#其次查看连续性变量再不同y值上的分布
fig,((ax1,ax2)) = plt.subplots(1,2,figsize=(15,6))

data_train.loc[data_train['isDefault'] ==1] \
    ['loanAmnt'].apply(np.log)\
    .plot(kind='hist',
         bins=100,
         title='Log Loan Amt - Fraud',
         color='r',
         xlim=(-3,10),
         ax=ax1)
data_train.loc[data_train['isDefault']==0]\
    ['loanAmnt'].apply(np.log)\
.plot(kind='hist',
     bins=100,
     title='Log Loan Amt - Not Fraud',
     color='b',
     xlim=(-3,10),
      ax=ax2)
<matplotlib.axes._subplots.AxesSubplot at 0x17b9393ff08>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DpO8sPTl-1600357826230)(output_60_1.png)]

total = len(data_train)
total_amt = data_train.groupby(['isDefault'])['loanAmnt'].sum().sum()
plt.figure(figsize=(12,5))
plt.subplot(121) #1代表行,2代表列,所以一共有2个图,1代表此时绘制第一个图。
plot_tr = sns.countplot(x='isDefault',data=data_train)#data_train‘isDefault’这个特征每种类别的数量**
plot_tr.set_title("Fraud Loan Distribution \n 0: good user | 1:bad user",fontsize=14)
plot_tr.set_xlabel("Is fraud by count",fontsize=16)
plot_tr.set_ylabel('Count',fontsize=16)
for p in plot_tr.patches:
    height = p.get_height()
    plot_tr.text(p.get_x()+p.get_width()/2.,
                height+3,
                '{:1.2f}%'.format(height/total*100),
                ha="center",fontsize=15)
    
percent_amt = (data_train.groupby(['isDefault'])['loanAmnt'].sum())
percent_amt = percent_amt.reset_index()
plt.subplot(122)
plot_tr_2 = sns.barplot(x='isDefault',y='loanAmnt',dodge=True,data=percent_amt)
plot_tr_2.set_title("Total Amount in loanAmnt \n 0: good user | 1:bad user",fontsize=14)
plot_tr_2.set_xlabel("Is fraud by percent",fontsize=16)
plot_tr_2.set_ylabel("Total Loan Amount Scalar",fontsize=16)
for p in plot_tr_2.patches:
    height = p.get_height()
    plot_tr_2.text(p.get_x()+p.get_width()/2.,
                  height + 3,
                  '{:1.2f}%'.format(height/total_amt * 100),
                  ha="center",fontsize=15)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gPYNTnXi-1600357826231)(output_61_0.png)]

2.3.5 时间格式数据处理及查看

#转化成时间格式
## issueDateDT 特征表示数据日期离数据集中日期最早的日期(2007-06-01)的天数
data_train['issueDate']= pd.to_datetime(data_train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01',"%Y-%m-%d")
data_train['issueDateDT'] = data_train['issueDate'].apply(lambda x: x-startdate).dt.days
#转化成时间格式
data_test_a['issueDate']= pd.to_datetime(data_train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01',"%Y-%m-%d")
data_test_a['issueDateDT'] = data_test_a['issueDate'].apply(lambda x: x-startdate).dt.days
plt.hist(data_train['issueDateDT'],label='train')
plt.hist(data_test_a['issueDateDT'],label='test')
plt.legend()
plt.title('Distribution of issueDateDT dates')

#train 和 test issueDateDT 日期有重叠 所以使用基于时间的分割进行验证是不明智的
Text(0.5, 1.0, 'Distribution of issueDateDT dates')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uNoPI0m9-1600357826232)(output_65_1.png)]

2.3.7 掌握透视图可以让我们更好的了解数据

#透视图 索引可以有多个,“columns(列)”是可选的,聚合函数aggfunc最后是被应用到了变量“values”中你所列举的项目上。
pivot = pd.pivot_table(data_train, index=['grade'],columns=['issueDateDT'],values=['loanAmnt'],aggfunc = np.sum)
pivot
loanAmnt
issueDateDT0306192122153183214245274...3926395739874018404840794110414041714201
grade
ANaN53650.042000.019500.034425.063950.043500.0168825.085600.0101825.0...13093850.011757325.011945975.09144000.07977650.06888900.05109800.03919275.02694025.02245625.0
BNaN13000.024000.032125.07025.095750.0164300.0303175.0434425.0538450.0...16863100.017275175.016217500.011431350.08967750.07572725.04884600.04329400.03922575.03257100.0
CNaN68750.08175.010000.061800.052550.0175375.0151100.0243725.0393150.0...17502375.017471500.016111225.011973675.010184450.07765000.05354450.04552600.02870050.02246250.0
DNaNNaN5500.02850.028625.0NaN167975.0171325.0192900.0269325.0...11403075.010964150.010747675.07082050.07189625.05195700.03455175.03038500.02452375.01771750.0
E7500.0NaN10000.0NaN17975.01500.094375.0116450.042000.0139775.0...3983050.03410125.03107150.02341825.02225675.01643675.01091025.01131625.0883950.0802425.0
FNaNNaN31250.02125.0NaNNaNNaN49000.027000.043000.0...1074175.0868925.0761675.0685325.0665750.0685200.0316700.0315075.072300.0NaN
GNaNNaNNaNNaNNaNNaNNaN24625.0NaNNaN...56100.0243275.0224825.064050.0198575.0245825.053125.023750.025100.01000.0

7 rows × 139 columns

2.3.8 用pandas_profiling生成数据报告

import pandas_profiling

pfr = pandas_profilingsProfileReport(data_train)
pfr.to_file("./example.html")
---------------------------------------------------------------------------

ModuleNotFoundError                       Traceback (most recent call last)

<ipython-input-81-2f82875e78c8> in <module>
----> 1 import pandas_profiling
      2 
      3 pfr = pandas_profilingsProfileReport(data_train)
      4 pfr.to_file("./example.html")


ModuleNotFoundError: No module named 'pandas_profiling'

数据探索性分析是我们初步了解数据,熟悉数据为特征工程做准备的阶段,甚至很多时候EDA阶段提取出来的特征可以直接当作规则来用。可见EDA的重要性,这个阶段的主要工作还是借助于各个简单的统计量来对数据整体的了解,分析各个类型变量相互之间的关系,以及用合适的图形可视化出来直观观察。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值