- 博客(14)
- 收藏
- 关注
原创 基于BOF的图像检索
BOFBag of Feature (BOF)算法简介BOF的本质是提出一种图像的特征表示方法。按照BOF算法的思想,首先我们要找到图像中的关键词,而且这些关键词必须具备较高的区分度。实际过程中,通常会采用SIFT特征。有了特征之后,我们会将这些特征通过聚类算法得出很多聚类中心。这些聚类中心通常具有较高的代表性,比如,对于人脸来说,虽然不同人的眼睛、鼻子等特征都不尽相同,但它们往往具有共性,而这些聚类中心就代表了这类共性。我们将这些聚类中心组合在一起,形成一部字典。对于图像中的每个「SIFT」特征,
2020-05-24 23:07:57
531
原创 NCC视差匹配
实验原理视差图计算深度信息可以通过计算1幅图像和其它图像的特征位置的像素差获得。视差图和深度图很像,因为视差大的像素离摄像机近,而视差小的像素离摄像机远。按以米为单位来计算摄像机距物体多远需要额外的计算。立体匹配算法的原理立体匹配算法的原理:就是找出两张图像的对应关系,根据三角测量原理,得到视差图;在获得了视差信息后,根据投影模型很容易地可以得到原始图像的深度信息和三维信息。局部立体匹配...
2020-04-26 17:14:38
353
原创 相机标定
实验原理张正友于1998年在论文:"A Flexible New Technique fro Camera Calibration"提出了基于单平面棋盘格的相机标定方法。该方法介于传统的标定方法和自标定方法之间,使用简单实用性强,有以下优点:不需要额外的器材,一张打印的棋盘格即可。标定简单,相机和标定板可以任意放置。标定的精度高。相机内参数设 P=(X,Y,Z) 为场景中的一点,进行下...
2020-04-07 16:30:12
235
原创 全景图像拼接
1、原理1、图像拼接的关键两步是:配准(registration)和融合(blending)。配准的目的是根据几何运动模型,将图像注册到同一个坐标系中;融合则是将配准后的图像合成为一张大的拼接图像。图像的平移模型是指图像仅在两维空间发生了 方向和 方向的位移,如果摄像机仅仅发生了平移运动,则可以采用平移模型。2、图像拼接主要有以下几个步骤:(1) 读入图片,利用SIFT特征自动找到匹配对应。...
2020-03-24 20:31:54
534
1
原创 SIFT特征提取与检索
1.sift简介SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞...
2020-03-08 20:14:47
327
原创 Harris角点检测及数据分析
一、算法概述1.1角点的描述角点是图像很重要的特征之一,对图像图形的理解和分析有很重要的作用。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。从图像分析的角度来定义角点可以有以下定义:角点是局窗口沿各方向移动,均匀产生明显变化的点,也是图像局部曲率突变的点。1.2Harris角点检测算法...
2020-02-25 16:51:07
355
原创 计算机视觉python基础图像处理
一、读入图片与灰度图# -*- coding: utf-8 -*-from PIL import Imagefrom pylab import *# 添加中文字体支持from matplotlib.font_manager import FontPropertiesfont = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", ...
2020-02-23 14:17:10
158
原创 粒子群算法的寻优算法-非线性函数极值寻优
粒子群算法的寻优算法-非线性函数极值寻优1、算法概述粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到...
2019-12-03 21:56:13
3581
1
原创 基于遗传算法的tsp问题
1.遗传算法1.1 遗传算法简介遗传算法是一种基于“适者生存”的高度并行、随机和自适应的优化算法,通过复制、交叉、变异将问题解编码表示的“染色体”群一代代不断进化,最终收敛到最适应的群体,从而求得问题的最优解或满意解。其优点是原理和操作简单、通用性强、不受限制条件的约束,且具有隐含并行性和全局解搜索能力,在组合优化问题中得到广泛应用。1.2 遗传算法原理在利用遗传算法求解问题时,问题的每一...
2019-11-19 22:53:57
760
原创 蚁群算法
蚁群算法算法概述蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。算法思想当蚂蚁沿着一条路到达终点以后会立马饭回来,这样,短的路蚂蚁来回一次的时间就断短,这也意味着重复的频率就快,因而在单位...
2019-11-05 17:52:32
965
原创 遗传算法
遗传算法一、遗传算法概述遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。由于仿照基因编码的工作很复杂,我们往往进行简化,如二...
2019-11-04 23:10:24
215
原创 模糊控制
代码:%模糊控制器设计a=newfis('fuzzf'); %创建新的模糊推理系统%输入1f1=1; a=addvar(a,'input','e',[-3*f1,3*f1]); %添加 e 的模糊语言变量a=addmf(a,'input',1,'NB','zmf',[-3*f1,-1*f1]); ...
2019-10-22 16:32:48
295
1
原创 BP神经网络
BP神经网络BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。基本原理人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实...
2019-10-08 20:44:46
717
原创 K-means算法
K-means算法理论基础1、聚类聚类是统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。2、K-means(K均值)算法k均值聚类算法(k-means clustering al...
2019-09-12 09:30:27
1030
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人