全景图像拼接

这篇博客探讨了全景图像拼接的原理,包括关键的配准和融合步骤,详细介绍了图像配准过程和RANSAC算法的应用。此外,作者分享了代码实现,并展示了定点和移动拍摄的实验结果,分析了遇到的错误及其解决方案。最后,对实验结果进行了深入的分析和总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、原理

1、图像拼接的关键两步是:配准(registration)和融合(blending)。配准的目的是根据几何运动模型,将图像注册到同一个坐标系中;融合则是将配准后的图像合成为一张大的拼接图像。图像的平移模型是指图像仅在两维空间发生了 方向和 方向的位移,如果摄像机仅仅发生了平移运动,则可以采用平移模型。
2、图像拼接主要有以下几个步骤:
(1) 读入图片,利用SIFT特征自动找到匹配对应。
(2) 使用RANSAC算法求解单应性矩阵
(3) 将所有的图像扭曲到一个公共的图像平面上。
(4) 进行图像融合。

2、代码

from pylab import *
from numpy import *
from PIL import Image

# If you have PCV installed, these imports should work
from PCV.geometry import homography, warp
from PCV.localdescriptors import sift

"""
This is the panorama example from section 3.3.
"""

# set paths to data folder
featname = ['D:/photo/pingjie2/inside'+str(i+1)+'.sift' for i in range(5)] 
imname = ['D:/photo/pingjie2/inside'+str(i+1)+'.jpg' for i in range(5)]

# extract features and match
l = {
   }
d = {
   }
for i in range(5):
    sift.process_image(imname[i], featname[i])
    l[i], d[i]</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值