前言
我们经常需要在csdn网站上写一些专业的数学公式,特别是在写与 数字信号处理和机器学习有关的博客时,为了友好地将公式展示给 读者,我们需要学习一些LaTex语法,特此记录。知识储备
1.四则运算$a+b$
显示效果
a
+
b
a+b
a+b
$a-b$
显示效果
a
−
b
a-b
a−b
$a*b$
显示效果
a
∗
b
a*b
a∗b
$\frac{a}{b}$
显示效果
a
b
\frac{a}{b}
ba
2.幂指对
$x^n$
显示效果
x
n
x^n
xn
$x^n$
显示效果
x
n
x^n
xn
$a^x$
显示效果
a
x
a^x
ax
$\log_a^b$
显示效果
log
a
b
\log_a^b
logab
$\ln x$
显示效果
ln
x
\ln x
lnx
由此可以知道
上标用’^’,下标用’_’;
如果上标或者下表不止一个符号,请用’{}’括起来;
3.根号,省略号,向量,特殊符号
$\sqrt x$
显示效果
x
\sqrt x
x
$\sqrt[n]{x}$
显示效果
x
n
\sqrt[n]{x}
nx
$\dots$
显示效果
…
\dots
…
$\vec x$
显示效果
x
⃗
\vec x
x
$\to $
显示效果$\to $
$\alpha $
显示效果$\alpha $
$\theta_i $
显示效果$\theta_i $
$a \geq b $
显示效果$a \geq b $
$a \leq b $
显示效果$a \leq b $
由此可以知道,键盘不能直接输入的符号,用’\英文单词’
4.累加,累乘
$\sum_{i=1}^{n} a_i^2x_i$
显示效果
∑
i
=
1
n
a
i
2
x
i
\sum_{i=1}^{n} a_i^2x_i
∑i=1nai2xi
$\displaystyle\sum_{i=1}^{n} a_i^2x_i$
显示效果
∑
i
=
1
n
a
i
2
x
i
\displaystyle\sum_{i=1}^{n} a_i^2x_i
i=1∑nai2xi
$\prod_{i=1}^{n} a_i^2x_i$
显示效果
∏
i
=
1
n
a
i
2
x
i
\prod_{i=1}^{n} a_i^2x_i
∏i=1nai2xi
$\displaystyle\prod_{i=1}^{n} a_i^2x_i$
显示效果
∏
i
=
1
n
a
i
2
x
i
\displaystyle\prod_{i=1}^{n} a_i^2x_i
i=1∏nai2xi
5.矩阵
$\begin{matrix} 1&2&3\\ 4&5&6\end{matrix}$
显示效果
1
2
3
4
5
6
\begin{matrix} 1&2&3\\ 4&5&6\end{matrix}
142536
$\begin{bmatrix} 1&2&3\\ 4&5&6\end{bmatrix}$
显示效果
[
1
2
3
4
5
6
]
\begin{bmatrix} 1&2&3\\ 4&5&6\end{bmatrix}
[142536]
$\begin{pmatrix} 1&2&3\\ 4&5&6\end{pmatrix}$
显示效果
(
1
2
3
4
5
6
)
\begin{pmatrix} 1&2&3\\ 4&5&6\end{pmatrix}
(142536)
$\begin{bmatrix} 1&&\\ &1&\\&&1\end{bmatrix}$
显示效果
[
1
1
1
]
\begin{bmatrix} 1&&\\ &1&\\&&1\end{bmatrix}
⎣⎡111⎦⎤
6.公式中更改颜色
$\displaystyle\sum_{i=1}^{n}\color{red}{a_i^2}x_i$
显示效果
∑
i
=
1
n
a
i
2
x
i
\displaystyle\sum_{i=1}^{n}\color{red}{a_i^2}x_i
i=1∑nai2xi
7.希腊字母
$\alpha$
显示
α
\alpha
α
$\Alpha$
显示
A
\Alpha
A
其余类推…
8.大括号
$\{\}$
显示
{
}
\{\}
{}
示例
一个N阶线性常系数差分方程用下式表示:y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) y(n)=\sum _{i=0}^{M}b_{i}x(n-i)-\sum _{i=1}^{N}a_{i}y(n-i) y(n)=∑i=0Mbix(n−i)−∑i=1Naiy(n−i)
或者
∑ i = 0 N a i y ( n − i ) = ∑ i = 0 M b i x ( n − i ) … … a 0 = 1 \sum _{i=0}^{N}a_{i}y(n-i) = \sum _{i=0}^{M}b_{i}x(n-i)\dots\dots a_{0}=1 ∑i=0Naiy(n−i)=∑i=0Mbix(n−i)……a0=1
其代码分别为
$y(n)=\sum _{i=0}^{M}b_{i}x(n-i)-\sum _{i=1}^{N}a_{i}y(n-i)$
$\sum _{i=0}^{N}a_{i}y(n-i) = \sum _{i=0}^{M}b_{i}x(n-i)\dots\dots a_{0}=1$