线程队列与IO操作
在计算争分夺秒的时候,需要去提高IO读取的速度?我们都知道操作系统里的IO速度是个瓶颈,如果还像以前那样用单核的那种多线程的话,肯定是不行的。单核的那种多线程是假的多线程,仅仅是用一块cpu利用人无法想象的速度换入换出任务,给人的一种一个cpu能同时处理多个任务。而在tensorflow里,可以做到真正的多线程,真的是几个cpu同时来搞。
如上图所示,我们拿读取数据并训练这个需求来举例。如果我们仅仅用一个线程去搞这个需求,训练数据这个子需求就要等待读取数据这个子需求搞完了才能搞。所以我们让主线程去训练数据,子线程去读取数据!!读取数据的时候用队列来实现先进先出。
Tensorflow队列
案例:完成一个出队列、+1、入队列操作(同步操作)
# 模拟一下同步先处理数据,然后才能取数据训练
# tensorflow当中,运行操作有依赖性
# # 1、首先定义队列
Q = tf.FIFOQueue(3, tf.float32)
#
# # 放入一些数据,这里这种写法是要与张量做区别,[,,]这种默认是张量
enq_many = Q.enqueue_many([[0.1, 0.2, 0.3], ])
#
# 2、定义一些处理数据的螺距,取数据的过程 取数据,+1, 入队列
#
out_q = Q.dequeue()
#
data = out_q + 1
#
en_q = Q.enqueue(data)
#
with tf.Session() as sess:
# # 初始化队列
sess.run(enq_many)
#
# # 处理数据
for i in range(100):
sess.run(en_q)
#
# # 训练数据
for i in range(Q.size().eval()):
print(sess.run(Q.dequeue()))
分析:当数据量很大时,入队操作从硬盘中读取数据,放入内存中,主线程需要等待入队操作完成,才能进行训练。会话里可以运行多个线程,实现异步读取。
队列管理器
通过队列管理器来实现变量加1,入队,主线程出队列的操作,观察效果?(异步操作)
# 模拟异步子线程 存入样本, 主线程 读取样本
# # 1、定义一个队列,1000
Q = tf.FIFOQueue(1000, tf.float32)
#
# #2、定义要做的事情 循环 值,+1, 放入队列当中
var = tf.Variable(0.0)
#
# # 实现一个自增 tf.assign_add,自增一定要是变量
data = tf.assign_add(var, tf.constant(1.0))
#
en_q = Q.enqueue(data)
#
# # 3、定义队列管理器op, 指定多少个子线程,子线程该干什么事情
qr = tf.train.QueueRunner(Q, enqueue_ops=[en_q] * 2)
#
# # 初始化变量的OP
init_op = tf.global_variables_initializer()
#
with tf.Session() as sess:
# # 初始化变量
sess.run(init_op)
#
# # 开启线程管理器
coord = tf.train.Coordinator()
#
# # 真正开启子线程,仅仅是对qr开启线程
threads = qr.create_threads(sess, coord=coord, start=True)
#
# # 主线程,不断读取数据训练
for i in range(300):
print(sess.run(Q.dequeue()))
#
# # 回收你
coord.request_stop()
#
coord.join(threads)
注意,如果不设置线程管理器,那么主线程满300次之后会话就关闭了,而子线程还在跑,但此时会话已关闭,session都没了,那就gg了。
文件读取
文件读取流程
文件读取API-文件队列构造
文件读取API-文件阅读器
文件读取API-文件内容解码器
开启线程操作
管道读端批处理
案例:如果读取的文件为多个或者样本数量为多个,怎么去管道读取?
# 批处理大小,跟队列,数据的数量没有影响,只决定 这批次取多少数据
def csvread(filelist):
"""
读取CSV文件
:param filelist: 文件路径+名字的列表
:return: 读取的内容
"""
# 1、构造文件的队列
file_queue = tf.train.string_input_producer(filelist)
# 2、构造csv阅读器读取队列数据(按一行)
reader = tf.TextLineReader()
key, value = reader.read(file_queue)
# 3、对每行内容解码
# record_defaults:指定每一个样本的每一列的类型,指定默认值[["None"], [4.0]]
records = [["None"], ["None"]]
example, label = tf.decode_csv(value, record_defaults=records)
# 4、想要读取多个数据,就需要批处理
example_batch, label_batch = tf.train.batch([example, label], batch_size=9, num_threads=1, capacity=9)
print(example_batch, label_batch)
return example_batch, label_batch
if __name__=="__main__":
## 返回当前目录下的文件名,是个列表
file_name=os.listdir("./data")
## 拼接每个文件的完整路径
filelist = [os.path.join("./data",file) for file in file_name]
example_batch,label_batch = csvread(filelist)
with tf.Session() as sess:
coord=tf.train.Coordinator()
#开启读文件的线程
threads=tf.train.start_queue_runners(sess,coord=coord)
#打印读取的内容,默认只读取一条数据,随机在该目录下的某个文件读取,要想多读数据,只能批处理
print(sess.run([example_batch,label_batch]))
# 回收你
coord.request_stop()
#
coord.join(threads)
图像读取
图像数字化三要素
左边的黑白图片通道数为1,在[0~255]之间取值,右边的彩图通道数为3,也就是RGB值!!
三要素与张量的关系
图像基本操作
在图像识别时每个像素点都是一个特征,如果是彩色,还要再乘上RGB这三个特征。然后在处理图片时,要适当缩放,注意不是裁剪!!
图像基本操作API
代码如下:
def picread(filelist):
"""
读取狗图片并转换成张量
:param filelist: 文件路径+ 名字的列表
:return: 每张图片的张量
"""
# 1、构造文件队列
file_queue = tf.train.string_input_producer(filelist)
# 2、构造阅读器去读取图片内容(默认读取一张图片)
reader = tf.WholeFileReader()
key, value = reader.read(file_queue)
print(value)
# 3、对读取的图片数据进行解码
image = tf.image.decode_jpeg(value)
print(image)
# 5、处理图片的大小(统一大小)
image_resize = tf.image.resize_images(image, [200, 200])
print(image_resize)
# 注意:一定要把样本的形状固定 [200, 200, 3],在批处理的时候要求所有数据形状必须定义
image_resize.set_shape([200, 200, 3])
print(image_resize)
# 6、进行批处理
image_batch = tf.train.batch([image_resize], batch_size=20, num_threads=1, capacity=20)
print(image_batch)
return image_batch
二进制文件读取
资源网站:http://www.cs.toronto.edu/~kriz/cifar.html
此网站有很多图像识别的训练素材。
示例代码:
# 定义cifar的数据等命令行参数
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("cifar_dir", "./data/cifar10/cifar-10-batches-bin/", "文件的目录")
tf.app.flags.DEFINE_string("cifar_tfrecords", "./tmp/cifar.tfrecords", "存进tfrecords的文件")
class CifarRead(object):
"""完成读取二进制文件, 写进tfrecords,读取tfrecords
"""
def __init__(self, filelist):
# 文件列表
self.file_list = filelist
# 定义读取的图片的一些属性
self.height = 32
self.width = 32
self.channel = 3
# 二进制文件每张图片的字节
self.label_bytes = 1
self.image_bytes = self.height * self.width * self.channel
self.bytes = self.label_bytes + self.image_bytes
def read_and_decode(self):
# 1、构造文件队列
file_queue = tf.train.string_input_producer(self.file_list)
# 2、构造二进制文件读取器,读取内容, 每个样本的字节数
reader = tf.FixedLengthRecordReader(self.bytes)
key, value = reader.read(file_queue)
# 3、解码内容, 二进制文件内容的解码
label_image = tf.decode_raw(value, tf.uint8)
print(label_image)
# 4、分割出图片和标签数据,切除特征值和目标值
label = tf.cast(tf.slice(label_image, [0], [self.label_bytes]), tf.int32)
image = tf.slice(label_image, [self.label_bytes], [self.image_bytes])
# 5、可以对图片的特征数据进行形状的改变 [3072] --> [32, 32, 3]
image_reshape = tf.reshape(image, [self.height, self.width, self.channel])
print(label, image_reshape)
# 6、批处理数据
image_batch, label_batch = tf.train.batch([image_reshape, label], batch_size=10, num_threads=1, capacity=10)
print(image_batch, label_batch)
return image_batch, label_batch
运行结果:
我们可以看到按批处理读取的话也是个张量,10是一次读几个样本,然后按32323读取。
TFRecords分析、存取
首先TFRecord是Tensorflow特有的文件格式,也是一种二进制的格式,如果仅仅用上面的cifar-10的普通处理的话我每次都要重新去读取拆分处理,是不是很麻烦??如果用了TFRecord,那么只需要上一节所返回的两个批处理结果即可,我们按TFRecord去存储去读取,效率更高。
TFRecords文件分析
TFRecords存储
TFRecords读取方法
类似于json字符串
代码示例:
def write_ro_tfrecords(self, image_batch, label_batch):
"""
将图片的特征值和目标值存进tfrecords
:param image_batch: 10张图片的特征值
:param label_batch: 10张图片的目标值
:return: None
"""
# 1、建立TFRecord存储器
writer = tf.python_io.TFRecordWriter(FLAGS.cifar_tfrecords)
# 2、循环将所有样本写入文件,每张图片样本都要构造example协议
for i in range(10):
# 取出第i个图片数据的特征值和目标值
#eval是取出张量里面的值,然后用tostring转成字符串
image = image_batch[i].eval().tostring()
##eval必须放在session里才行,也就是当前方法要放在session里
label = int(label_batch[i].eval()[0])
# 构造一个样本的example
example = tf.train.Example(features=tf.train.Features(feature={
"image": tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])),
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label])),
}))
# 写入单独的样本,数据持久化要先序列化
writer.write(example.SerializeToString())
# 关闭
writer.close()
return None
def read_from_tfrecords(self):
# 1、构造文件队列
file_queue = tf.train.string_input_producer([FLAGS.cifar_tfrecords])
# 2、构造文件阅读器,读取内容example,value=一个样本的序列化example
reader = tf.TFRecordReader()
key, value = reader.read(file_queue)
# 3、解析example
features = tf.parse_single_example(value, features={
"image": tf.FixedLenFeature([], tf.string),
"label": tf.FixedLenFeature([], tf.int64),
})
# 4、解码内容, 如果读取的内容格式是string需要解码, 如果是int64,float32不需要解码
image = tf.decode_raw(features["image"], tf.uint8)
# 固定图片的形状,方便与批处理
image_reshape = tf.reshape(image, [self.height, self.width, self.channel])
label = tf.cast(features["label"], tf.int32)
print(image_reshape, label)
# 进行批处理
image_batch, label_batch = tf.train.batch([image_reshape, label], batch_size=10, num_threads=1, capacity=10)
return image_batch, label_batch