洛谷P1464 Function题解

本文探讨了一道C++编程题,该题涉及到递归函数的优化。作者通过分析代码运行超时的问题,引入了记忆化搜索的概念,通过使用二维数组存储中间结果来避免重复计算,从而提高效率。然而,优化后的代码并未达到预期效果,反而导致了错误。文章以实例展示了递归优化的挑战,并提供了相关资源链接进一步了解记忆化搜索。
摘要由CSDN通过智能技术生成

其实这道题很简单,难的部分在于如何优化。

直接复制下来就好了。

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
int w(int a,int b,int c)
{
	if(a<=0 or b<=0 or c<=0)return 1;
	else if(a>20 or b>20 or c>20)return w(20,20,20);
	else if(a<b&&b<c)return w(a-1,b,c)+w(a-1,b-1,c)-w(a,b-1,c);
	else return w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
	//这一部分直接抄题目的条件。
}
int main()
{
	int a,b,c;
	while(scanf("%lld%lld%lld",&a,&b,&c)==3)
    {
        if(a==-1&&b==-1&&c==-1)break;
        printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c));
    }
	return 0;
}	

如果把这个拿去测试的话~

会满分。

它会提示超时。

 

 (如上,每个测试点运行时都为1.2秒,超时了。)

那么,为什么会超时呢?

我也不知道。

根据题目所说的--

这是个简单的递归函数,但实现起来可能会有些问题。当a,b,c均为15时,调用的次数将非常的多。你要想个办法才行。比如 :w(30,−1,0)既满足条件1,又满足条件2,这种时候我们就按最上面的条件来算,所以答案为1。

中可以得知,正常调用的话递归的次数将非常的多。于是,我们怎么才能优化呢?

我依旧不知道。

首先,我们需要定义一个数组,用来存储得到的结果。如果在数组里面有需要返回的值,就可以直接返回,而不需要再次递归。因此,这道题的提示才为“记忆化搜索”。

中转站:记忆化搜索 —— 搜索 or 动态规划 ?(来自知乎)

记忆化搜索算法之动态规划(来自CNblogs)

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
long long q[25][25][25];//定义数组,后面用来优化。 
long long w(long long a,long long b,long long c)//这里要用long long,不然会报错。 
{
	if(a<=0 or b<=0 or c<=0)return 1;
	else if(a>20 or b>20 or c>20)
	{
		q[20][20][20]=w(20,20,20);//将结果存入数组后再返回。 
		return q[20][20][20];
	}
	if(q[a][b][c]==0) 
	{
		if(a<b&&b<c)
		{
			q[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);//将结果存入数组后再返回。 
			return q[a][b][c];
		}
		else
		{
			q[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);//将结果存入数组后再返回。 
			return q[a][b][c];
		}
	}
	else return q[a][b][c];
}
int main()
{
	long long a,b,c;
	while(scanf("%lld%lld%lld",&a,&b,&c)==3)
    {
        if(a==-1&&b==-1&&c==-1)break;
        printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c));
    }
	return 0;
}	

那么,我们就会~

全错。

全对。

 

The end~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值