其实这道题很简单,难的部分在于如何优化。
直接复制下来就好了。
代码如下:
#include<iostream>
#include<cstdio>
using namespace std;
int w(int a,int b,int c)
{
if(a<=0 or b<=0 or c<=0)return 1;
else if(a>20 or b>20 or c>20)return w(20,20,20);
else if(a<b&&b<c)return w(a-1,b,c)+w(a-1,b-1,c)-w(a,b-1,c);
else return w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
//这一部分直接抄题目的条件。
}
int main()
{
int a,b,c;
while(scanf("%lld%lld%lld",&a,&b,&c)==3)
{
if(a==-1&&b==-1&&c==-1)break;
printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c));
}
return 0;
}
如果把这个拿去测试的话~
会满分。
它会提示超时。
(如上,每个测试点运行时都为1.2秒,超时了。)
那么,为什么会超时呢?
我也不知道。
根据题目所说的--
这是个简单的递归函数,但实现起来可能会有些问题。当a,b,c均为15时,调用的次数将非常的多。你要想个办法才行。比如 :w(30,−1,0)既满足条件1,又满足条件2,这种时候我们就按最上面的条件来算,所以答案为1。
中可以得知,正常调用的话递归的次数将非常的多。于是,我们怎么才能优化呢?
我依旧不知道。
首先,我们需要定义一个数组,用来存储得到的结果。如果在数组里面有需要返回的值,就可以直接返回,而不需要再次递归。因此,这道题的提示才为“记忆化搜索”。
代码如下:
#include<iostream>
#include<cstdio>
using namespace std;
long long q[25][25][25];//定义数组,后面用来优化。
long long w(long long a,long long b,long long c)//这里要用long long,不然会报错。
{
if(a<=0 or b<=0 or c<=0)return 1;
else if(a>20 or b>20 or c>20)
{
q[20][20][20]=w(20,20,20);//将结果存入数组后再返回。
return q[20][20][20];
}
if(q[a][b][c]==0)
{
if(a<b&&b<c)
{
q[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);//将结果存入数组后再返回。
return q[a][b][c];
}
else
{
q[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);//将结果存入数组后再返回。
return q[a][b][c];
}
}
else return q[a][b][c];
}
int main()
{
long long a,b,c;
while(scanf("%lld%lld%lld",&a,&b,&c)==3)
{
if(a==-1&&b==-1&&c==-1)break;
printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c));
}
return 0;
}
那么,我们就会~
全错。
全对。