数据结构与算法——算法的时间和空间复杂度

什么是数据结构

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合

数据结构和数据库

数据结构:内存中管理-增删查改,数据量较小
数据库:磁盘中管理数据-增删查改,处理数据很大

什么是算法

1.算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果
2.通俗的说就是利用不同的方法对数据进行处理,比如排序中的快速排序、冒泡排序等

算法效率

算法的复杂度

1.算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度
2.时间复杂度主要衡量一个算法的运行快慢
3.空间复杂度主要衡量一个算法运行所需要的额外空间
4.在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

时间复杂度

时间复杂度的概念

1.时间复杂度并不是在算执行时间,因为执行时间和硬件设备和机器环境有很大关系,没有确切的标准
2.算法中所消耗的时间与语句的执行次数呈正相关,为算法的时间复杂度
3.计算时间复杂度时,并不一定要计算精确的执行次数,而只需要大概执行次数,使用大O的渐进表示法

大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号,是量级的估算

推导大O阶方法:
1.用常数1取代运行时间中的所有加法常数
2.在修改后的运行次数函数中,只保留最高阶项
3.如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶
在实际中一般情况关注的是算法的最坏运行情况,所以时间复杂度算的是最坏情况

计算时间复杂度

例1
// 计算Func2的时间复杂度?
void Func2(int N) {
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

1.第1个循环执行的次数为2N次,第2个执行次数是10次,总的次数是2N+10次
2.当N趋近于无穷大时2和10对数量级影响不大,主要取决于N,所以Fun2的时间复杂度是O(N)

例2
// 计算Func3的时间复杂度?
void Func3(int N, int M) {
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

1.第1个循环执行了M次,第2个循环执行了N次,共执行了M+N次
2.🎈当M远大于N时,是O(M)
🎈当N远大于M时,是O(N)
🎈当M与N相同时,是O(M)或者O(N)

例3
// 计算Func4的时间复杂度?
void Func4(int N) 
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

1.该循环共执行了100次,由于是常数,所以统一用1代替,即O(1)

例4
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )

1.该函数的作用是在str中查找与character相同的字符
2.最好的情况是查找1次,最坏的情况是查找N次
3.要以最坏的情况作为复杂度,即O(N)

例5
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

1.这是冒泡排序算法,外层循环共执行n次,外层循环执行1次,内层循环执行n-1次
2.当end=n时,内层循环执行n-1次
   当end=n-1时,内层循环执行n-2次
   ……
   当end=2时,内层循环执行1次
   当end=1时,内层循环不执行
3.最终结果是个等差数列的和(Sn=n*a1+n(n-1)*d/2),一共执行了n-1次,代入公式得:n(n-1)/2,
当n无穷大时,仅与N2有关,所以时间复杂度是O(N2)

例6
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

不能只看循环次数,要看算法逻辑
1.这是二分查找算法,前提是数组内容是有序的
2.最好的情况是查找一次,O(1)
3.最坏的情况是:由于每查找1次,查找区间个数减少一半,当begin与end相等时,区间只剩一个元素,此还是没有找到,假设查找了k次,即除了k个2,所以N/(2k)=1,k=log2N(2可以省略)

例7
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) {
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

1.递归算法,假如N=5,执行1次,N=4,执行1次……N=1,执行1次,N=0,执行1次。归纳总结,当是N时,执行N+1次,结果是O(N)

例8
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) {
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

在这里插入图片描述
由图片可以看出,是个等比数列求和(Sn=a1*(1-qn)/(1-q)),共n次求和,结果是2n-1,即时间复杂度是O(2N)

空间复杂度

什么是空间复杂度

1.空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度
2.空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法<
3.函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定
注意:空间是可以重复利用的,不用累计。而时间是一去不复返是累计的

空间复杂度的计算

例1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n) 
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

1.该函数的形式参数的数组,是作为条件给的,没有额外去开,不算入空间复杂度
2.刚开始创建end这1个变量,每次循环只创建2个变量:exchange、i,每次创建的都是同一块空间,没有占用额外的空间,所以空间复杂度是常数,即O(1)

例二
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) 
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

1.每个fac函数栈帧是常数个,共n-1个,空间复杂度是O(N)

例三
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) 
{
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

1.与例二类似,不过例三开辟了一个数组,空间复杂度是O(N)

例四
// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N) 
{
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

1. 先f(n-1)的部分,然后返回,空间销毁,然后f(n-2)使用同一块空间,所以空间一直在重复利用,空间复杂度是O(N)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值