数据归一化——自学第三篇

本文介绍了数据归一化在机器学习中的作用,包括最值归一化和均值方差归一化两种方法,并强调了测试数据集归一化的正确方式,即使用训练数据集的统计信息。通过对iris数据集的KNN分析,展示了归一化对模型精度的提升效果。
摘要由CSDN通过智能技术生成

1、数据归一化(normalization)

举个例子,例如下图所示的判断是否为恶性肿瘤的数据中,有两个特征,分别为肿瘤大小和肿瘤发现的时间,如果按照KNN算法中需要计算两个数据之间的欧拉距离,则发现时间的差的平方将远远大于肿瘤大小的差的平方,因此样本间的距离被“发现时间”所主导。

这里写图片描述
如果不进行数据归一化,则计算结果很可能被其中一个特征所主导

(1)最值归一化:把所有数据都映射到0-1之间

xscale=xxmin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值