机器学习之神经网络,反向传播

本文介绍了神经网络中的反向传播概念,它作为正向传播的逆运算,通过计算损失函数的梯度来更新权重。文章详细阐述了反向传播的过程,包括涉及的复合函数求导,并举例说明。同时,提到了Sigmoid函数在正向传播和反向传播中的应用。
摘要由CSDN通过智能技术生成

一、反向传播的概念

在前面的一篇中,说到了正向传播,其实反向传播就是正向传播的逆运算,通过最终结果反向进行求导,并更新梯度值(wb的值)

二、反向传播的过程

说起来感觉也很简单,还需要复合函数求导的数学知识:

\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}

正向传播的公式:J(W,b,x,y) = \frac{1}{2}||a^L-y||_2^2

最后一层L层的输出值:a^L = \sigma(z^L) = \sigma(W^La^{L-1} + b^L)

最终的损失函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值