基本数据结构――堆的基本概念及其操作

堆是一种完全二叉树结构,这意味着它具有完全二叉树的性质,其中一点如下所示:

设完全二叉树的一元素编号为i,1 <= I <= n,n为元素总数。有以下关系成立:
1、如果i=1,则该元素为二叉树的根节点,若i>1,则其父节点的编号为(int)(i/2);(去除余数)
2、如果2*i > n,则该元素无左孩子。否则,其左孩子的编号为2 * i;
3、如果1 + 2*i > n ,则该元素无右孩子,否则,其右孩子的编号为1+2*i

什么是完全二叉树呢?若设二叉树的深度为h,除第 h 层外,其它各层 (1h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。我们知道二叉树可以用数组模拟,堆自然也可以。

现在让我们来画一棵完全二叉树:

                  

      从图中可以看出,元素的父亲节点数组下标是本身的1/2(只取整数部分)

      堆还分为两种类型:大根堆小根堆 顾名思义,就是保证根节点是所有数据中最大/小,并且尽力让小的节点在上方

      不过有一点需要注意:堆内的元素并不一定数组下标顺序来排序的!!很多的初学者会错误的认为大/小根堆中

    下标为1就是第一大/小,2是第二大/小…… 对于最大堆在二叉树上只是保证任何一个子节点都不大于其父节点。

      原因会在后面解释,现在你只需要深深地记住这一点!

      我们刚刚画的完全二叉树中并没有任何元素,现在让我们加入一组数据吧!

      下标从1到9分别加入:{8,5,2,9,3,7,1,4,6}。

      如下图所示

                  

 

现在我就来介绍一下堆的几个基本操作

1.上浮 shift_up

2.下沉 shift_down

3.插入 push

4.弹出 pop

5.取顶 top

6.堆排序 heap_sort

                    那么我们开始讲解操作过程吧,我们以小根堆为例

      刚刚那组未处理过的数据中我们很容易就能看出,根节点1元素8绝对不是最小的

      我们很容易发现它的一个儿子节点3(元素2)比它来的小,我们怎么将它放到最高点呢?很简单,直接交换嘛~~

      但是,我们又发现了,3的一个儿子节点7(元素1)似乎更适合在根节点。

      这时候我们是无法直接和根节点交换的,那我们就需要一个操作来实现这个交换过程,那就是上浮 shift_up

      操作过程如下:

      从当前结点开始,和它的父亲节点比较,若是比父亲节点来的小,就交换,

    然后将当前询问的节点下标更新为原父亲节点下标;否则退出。 

      模拟操作图示:

                

      伪代码如下:i 输入序号7

Shift_up( i )
{
    while( i / 2 >= 1)
    {
        if( 堆数组名[ i ] < 堆数组名[ i/2 ] )
        {
            swap( 堆数组名[ i ] , 堆数组名[ i/2 ]) ;
            i = i / 2;
        }
        else break;
}

      这一次上浮完毕之后呢,我们又发现了一个问题,貌似节点3(元素8)不太合适放在那,而它的子节点7(元素2)

    好像才应该在那个位置。

      此时的你应该会说:“赐予我力量,让节点7上浮吧,我是OIer!”

      然而,上帝(我很不要脸的说是我)赐予你另外一种力量,让节点3下沉!

      那么问题来了:节点3应该往哪下沉呢?

      我们知道,小根堆是尽力要让小的元素在较上方的节点,而下沉与上浮一样要以交换来不断操作,所以我们应该

    让节点7与其交换。     

      由此我们可以得出下沉的算法了:   

      让当前结点的左右儿子(如果有的话)作比较,哪个比较小就和它交换,

    并更新询问节点的下标为被交换的儿子节点下标,否则退出。

      模拟操作图示:

                

      伪代码如下:i输入3 n输入7

Shift_down( i , n )    //n表示当前有n个节点
{
    while( i * 2 <= n)
    {
        T = i * 2 ;
        if( T + 1 <= n && 堆数组名[ T + 1 ] < 堆数组名[ T ])
            T++;
        if( 堆数组名[ i ] < 堆数组名[ T ] )
        {
           swap( 堆数组名[ i ] , 堆数组名[ T ] );
            i = T;
        }
        else break;
}

      讲完了上浮和下沉,接下来就是插入操作了~~~~

      我们前面用的插入是直接插入,所以数据才会杂乱无章,那么我们如何在插入的时候边维护堆呢?

    其实很简单,每次插入的时候呢,我们都往最后一个插入,让后使它上浮。

      伪代码如下:

Push ( x )
    {
        n++;
        堆数组名[ n ] = x;
        Shift_up( n );
    }

      咳咳,说完了插入,我们总需要会弹出吧~~~~~

      弹出,顾名思义就是把顶元素弹掉,但是,弹掉以后不是群龙无首吗??

      我们如何去维护这堆数据呢?

      稍加思考,我们不难得出一个十分巧妙的算法:

    让根节点元素和尾节点进行交换,然后让现在的根元素下沉就可以了!

      伪代码如下:

Pop ( x )
    {
        swap( 堆数组名[1] , 堆数组名[ n ] );
        n--;
        Shift_down( 1 );
    }

      接下来是取顶…..我想不需要说什么了吧,根节点数组下标必定是1,返回堆[ 1 ]就OK了~~

    注意:每次取顶要判断堆内是否有元素,否则..你懂的

      说完这些,我们再来说说堆排序。之前说过堆是无法以数组下标的顺序来来排序的对吧?

      所以我个人认为呢,并不存在堆排序这样的操作,即便网上有很多堆排序的算法,但是我这里有个更加方便的算法:

    开一个新的数组,每次取堆顶元素放进去,然后弹掉堆顶就OK了~

 

      伪代码如下:

Heap_sort( a[] )
{
        k=0;
        while( size > 0 )
        {
            k++;
            a[ k ] = top();
            pop();    
        }        
}

      堆排序的时间复杂度是O(nlogn)理论上是十分稳定的,但是对于我们来说并没有什么卵用。

      我们要排序的话,直接使用快排即可,时间更快,用堆排还需要O(2*n)空间。这也是为什么我说堆的操作

    时间复杂度在O(1)~O(logn)。

      讲完到这里,堆也基本介绍完了,那么它有什么用呢??

      举个粒子,比如当我们每次都要取某一些元素的最小值,而取出来操作后要再放回去,重复做这样的事情。

      我们若是用快排的话,最坏的情况需要O(q*n^2),而若是堆,仅需要O(q*logn),时间复杂度瞬间低了不少。

      还有一种最短路算法——Dijkstra,需要用到堆来优化,这个算法我后面会找个时间介绍给大家。

      最后附上我写的一份堆操作的代码(C++):

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 100010   //这部分可以自己定义堆内存多少个元素 
using namespace std;
struct Heap
{
    int size,queue[maxn];
    Heap()         //初始化 
    {
        size=0;
        for(int i=0;i<maxn;i++)
            queue[i]=0;
    }
    void shift_up(int i)  //上浮 
    {
        while(i>1)
        {
            if(queue[i]<queue[i>>1])
            {
                int temp=queue[i];
                queue[i]=queue[i>>1];
                queue[i>>1]=temp;
            }
            i>>=1;
        }
    }
    void shift_down(int i)   //下沉 
    {
        while((i<<1)<=size)
        {
            int next=i<<1;
            if(next<size && queue[next+1]<queue[next])
                next++;
               if(queue[i]>queue[next])
               {
                int temp=queue[i];
                queue[i]=queue[next];
                queue[next]=temp;
                i=next;
            }
            else return ;
        }
    }
    void push(int x)   //加入元素 
    {
         queue[++size]=x;
        shift_up(size);
    }
    void pop()         //弹出操作 
    {
        int temp=queue[1];
        queue[1]=queue[size];
        queue[size]=temp;
        size--;
        shift_down(1);
    }
    int top(){return queue[1];}
    bool empty(){return size;} 
    void heap_sort()    //另一种堆排方式,由于难以证明其正确性 
    {                    //我就没有在博客里介绍了,可以自己测试 
        int m=size; 
        for(int i=1;i<=size;i++)
        {
            int temp=queue[m];
            queue[m]=queue[i];
            queue[i]=temp;
            m--;
            shift_down(i);
        }
    }    
};
int main()
{
    Heap Q;
    int n,a,i,j,k;
    cin>>n;
    for(i=1;i<=n;i++)
    {
        cin>>a;
        Q.push(a); //放入堆内 
    }
    
    for(i=1;i<=n;i++)
    {
         cout<<Q.top()<<" ";  //输出堆顶元素 
        Q.pop();        //弹出堆顶元素 
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值