阿瓦的海报
暴力枚举边长到sqrt(n),然后算
#include<bits/stdc++.h>
using namespace std;
int T,s,tep;
int read()
{
int x=0;char c=getchar();
while(c>'9'||c<'0')c=getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
return x;
}
int main()
{
cin>>T;
while(T--)
{
s=read();
for(int i=1;i<=sqrt(s);i++)if(s%i==0)tep=i;
printf("%d\n",(tep+(s/tep))*2);
}
return 0;
}
T2大战幻想珠
枚举字符串最中间的位置,分奇数偶数的字符串,不断地向外拓展,如果一样答案加加,继续拓展
#include<bits/stdc++.h>
using namespace std;
string s;
int n,ans;
int main()
{
cin>>n;
cin>>s;
for(int i=0;i<s.size();i++)
{
int p=i,q=i;
while(p<n&&q>=0)
if(s[p]==s[q]||s[q]=='?'||s[p]=='?')ans++,q--,p++;//偶数
else break;
p=i+1;q=i;
while(p<n&&q>=0)
if(s[p]==s[q]||s[q]=='?'||s[p]=='?')ans++,q--,p++;//奇数
else break;
}
cout<<ans;
return 0;
}
T3 阿瓦开关灯
阿瓦由于乱下指令,将某黑暗力量所在的王国变成了整个幻想世界最冷清的王国,就被人告状到阿卡处。阿卡 虽然很痛苦但也只好给阿瓦分配惩罚。他思前想后还是觉得整个王国最轻松的惩罚就是负责每天晚上把整个王国 的灯关掉。
整个王国虽然有成千上万的灯,但充满智慧的阿卡在早些年就建造了为数不多的几个供电系统,每个系统掌 管一片区域的灯的开关。所以阿瓦这个工作就愈发轻松了,只需要将这几个供电系统关掉就可以了。
阿瓦来到了供电系统的控制台,发现这实在是太奇怪了。这里的开关居然不是只控制一个供电系统的,而是使 若干个供电系统反向的!具体地讲,假设有 2 个供电系统,则每一个开关有两个参数,每个都是一个 01 变量,代 表的意义是要不要将第 i 个供电系统反向。如果有一个开关的两个参数是 11,则表示按下这个开关它会将两个供 电系统全部反向,如果是 10,则表示按下这个开关,1 号供电系统会被反向而 2 号不会。多个参数时的意义也可 以类似理解。
为供电系统反向的意思是,如果一个供电系统原来的状态是灯开着,反向了之后就变成了灯关着。如果原来是 关着,反向之后就变成开着。
很容易看出,一个开关按两次和没按的效果是一样的,因此我们规定,一个开关只能按一次或者不按。
阿瓦可以按若干个这样的开关来达到所有的供电系统都关闭的要求,不过她想知道,有多少种方法可以达到 目的,但这种方法实在是太多了,你需要将答案对 998244353 取模。
我们称两种方法是不同的,当且仅当存在一个开关 x,在一种方法中按了,在另一种方法中没有按。
刚开始所有的供电系统都是开着的,阿瓦的目的是使所有的供电系统关闭。
状压DP,因为供电系统的数目很小,那么可以用二进制表示,用异或(^)则可以实现电灯开关转换
#include<bits/stdc++.h>
#define mo 998244353
using namespace std;
int a[15000],dp[15000][550],n,m;
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=0;j<m;j++)
{int x;cin>>x;a[i]+=(x<<j);}
int st;st=(1<<m);//状压
dp[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<st;j++)
{
dp[i][j]+=dp[i-1][j];
dp[i][j]%=mo;
dp[i][j^a[i]]+=dp[i-1][j];//转换
dp[i][j^a[i]]%=mo;
}
cout<<dp[n][st-1];
return 0;
}
T4烤乐滋野餐
50pts
#include<bits/stdc++.h>
using namespace std;
queue<int> q;
int t,n,m,s,f[100000][20],d[100000],dist[100000],val[100000],food[100000];
int head[100000],cnt;
struct edge
{
int next,to,dis;
}a[100000];
void add(int u,int v,int d)
{
a[++cnt].next=head[u];
a[cnt].to=v;
a[cnt].dis=d;
head[u]=cnt;
}
int gcd(int a, int b)
{
return (b == 0 ? a : gcd(b, a % b));
}
void bfs()
{
q.push(s);
d[s]=1;
while(q.size())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=a[i].next)
{
int y=a[i].to;
if(d[y])
continue;
d[y]=d[x]+1;//求节点深度
dist[y]=dist[x]+a[i].dis;//求路径长度总和
food[y]=food[x]+val[x];//求路径食物总和,不包括自己
f[y][0]=x;//2进制优化,非常高级相当于y节点往上走2的0次幂布。
for(int j=1;j<=t;j++)
f[y][j]=f[f[y][j-1]][j-1];//2进制优化,相当于y节点往上走2的j-2次步,再往上走2的j-1次步,就相当于Y向上走2的j次步。
q.push(y);
}
}
}
int lca(int x,int y)
{
if(d[x]>d[y])
swap(x,y);//时后者深度更大
for(int i=t;i>=0;i--)//通过二进制优化,找到和x,深度相同的f[y][i]
{
if(d[f[y][i]]>=d[x])
y=f[y][i];
}
if(x==y)//如果恰好同一点直接返回x
return x;
for(int i=t;i>=0;i--)//同时向上走2的i次幂布,很高级的优化,比一步步走快多了
{
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][0];//返回x的爸爸就是最近公共祖先
}
int main()
{
int x,y,d1;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&val[i]);
for(int i=1;i<=n;i++)
s=1;
t=(int)(log(n)/log(2))+1;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&d1);
add(x,y,d1);
add(y,x,d1);
}
bfs();
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int ans1,ans2,fa,mod;
scanf("%d%d",&x,&y);
fa=lca(x,y);
ans1=food[x]+food[y]-2*food[fa]-val[fa]+val[x]+val[y];
ans2=dist[x]+dist[y]-2*dist[fa];
if(ans2!=0)
{
mod=gcd(ans1,ans2);
ans1=ans1/mod;
ans2=ans2/mod;
}
else
ans1=1;
printf("%d/%d\n",ans1,ans2);
}
return 0;
}
100pts :倍增法求LCA(最近公共祖先)
define maxn 100005
#define ll long long
using namespace std;
ll dep[maxn],a[maxn],fa[maxn][25],dis[maxn],food[maxn];
int head[maxn],tot;
int n,m;
struct node
{
int u;
int y;
int v;
}edge[maxn<<2];
void add(int x,int y,int z)
{
++tot;
edge[tot].u=head[x];
edge[tot].y=y;
edge[tot].v=z;
head[x]=tot;
}
void dfs(int x,int fax,ll de,ll di,ll fo)
{
fa[x][0]=fax;
dep[x]=de;
food[x]=fo;
dis[x]=di;
for(int i=1;i<=17;i++)fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=edge[i].u)
{
int f=edge[i].y,V=edge[i].v;
if(f!=fax)dfs(f,x,de+1,di+V,fo+a[f]);
}
}
int lca(int u,int v)
{
if(dep[u]<dep[v])swap(u,v);
int x=dep[u]-dep[v];
for(int i=0;i<=17;i++)if((1<<i)&x) u=fa[u][i];
if(u==v)return u;
for(int i=17;i>=0;i--)if(fa[u][i]!=fa[v][i])u=fa[u][i],v=fa[v][i];
return fa[u][0];
}
int gcd(int x,int y)
{
if(y==0)return x;
return gcd(y,x%y);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<n;i++)
{
int x,y,z;cin>>x>>y>>z;
add(x,y,z);
add(y,x,z);
}
cin>>m;
dfs(1,0,0,0,a[1]);
for(int i=1;i<=m;i++)
{
int x,y;cin>>x>>y;
int z=lca(x,y);
int diss=dis[x]+dis[y]-2*dis[z];
int fd=food[x]+food[y]-2*food[z]+a[z];
if(diss==0)cout<<"1/0"<<endl;
else
{
int t=gcd(diss,fd);
diss/=t;fd/=t;
cout<<fd<<"/"<<diss<<endl;
}
}
return 0;