数据结构与算法(一)栈与队列

1.滑动窗口

描述

给定一个长度为n(n<=10^6)的数组。有一个大小为k的滑动窗口从数组的最左端移动到最右端。你可以看到窗口中的k个数字。窗口每次向右滑动一个数字的距离。

下面是一个例子:

数组是 [1 3 -1 -3 5 3 6 7], k = 3。

 

窗口位置最小值最大值
[1  3  -1] -3  5  3  6  7 -13
 1 [3  -1  -3] 5  3  6  7 -33
 1  3 [-1  -3  5] 3  6  7 -35
 1  3  -1 [-3  5  3] 6  7 -35
 1  3  -1  -3 [5  3  6] 7 36
 1  3  -1  -3  5 [3  6  7]37



你的任务是得到滑动窗口在每个位置时的最大值和最小值。

 

输入

输入包括两行。
第一行包括n和k,分别表示数组的长度和窗口的大小。
第二行包括n个数字。

输出

输出包括两行。
第一行包括窗口从左至右移动的每个位置的最小值。
第二行包括窗口从左至右移动的每个位置的最大值。

样例输入

8 3
1 3 -1 -3 5 3 6 7

样例输出

-1 -3 -3 -3 3 3
3 3 5 5 6 7

 

2.抓住那头牛

描述

农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式:

1、从X移动到X-1或X+1,每次移动花费一分钟

2、从X移动到2*X,每次移动花费一分钟

 

假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?

 

输入

两个整数,N和K

输出

一个整数,农夫抓到牛所要花费的最小分钟数

样例输入

5 17

样例输出

4

 

3.发型糟糕的一天

描述

农夫John 的N(1 ≤ N ≤ 80,000)只奶牛中,有一些也许正在经历发型糟糕的一天。每只奶牛对自己乱糟糟的发型都有自知之明,农夫John想知道所有奶牛能看到其他奶牛头顶的数量之和。

任意奶牛i身高记为 hi (1 ≤ hi ≤ 1,000,000,000),所有奶牛面向东方(本题示意图的右面)依次站成一条线。因此,奶牛i能够看到在它前面的(奶牛i+1,i+2…)所有身高比它低的奶牛,直到被一头比它高的奶牛挡住

考虑如下的例子:

 

        =
=       =
=   -   =         Cows facing right ->
=   =   =
= - = = =
= = = = = =
1 2 3 4 5 6 

奶牛#1 可以看见奶牛#2, 3, 4的头顶

奶牛#2 无法看到任何奶牛的头顶

奶牛#3可以看见奶牛#4的头顶

奶牛#4无法看到任何奶牛的头顶

奶牛#5可以看见奶牛#6的头顶

奶牛#6无法看到任何奶牛的头顶!

用ci表示奶牛i能够看到头顶的奶牛个数;请计算c1 至cN的和。对于上面这个例子,其和为:3 + 0 + 1 + 0 + 1 + 0 = 5。

输入

第1行:奶牛数N


第2行至N+1行:第i+1行包含一个整数,表示奶牛i的高度

输出

第1行:c1 至cN的累加和

样例输入

6
10
3
7
4
12
2

样例输出

5

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值