1.滑动窗口
描述
给定一个长度为n(n<=10^6)的数组。有一个大小为k的滑动窗口从数组的最左端移动到最右端。你可以看到窗口中的k个数字。窗口每次向右滑动一个数字的距离。
下面是一个例子:
数组是 [1 3 -1 -3 5 3 6 7], k = 3。
窗口位置 | 最小值 | 最大值 |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
你的任务是得到滑动窗口在每个位置时的最大值和最小值。
输入
输入包括两行。
第一行包括n和k,分别表示数组的长度和窗口的大小。
第二行包括n个数字。
输出
输出包括两行。
第一行包括窗口从左至右移动的每个位置的最小值。
第二行包括窗口从左至右移动的每个位置的最大值。
样例输入
8 3
1 3 -1 -3 5 3 6 7
样例输出
-1 -3 -3 -3 3 3
3 3 5 5 6 7
2.抓住那头牛
描述
农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式:
1、从X移动到X-1或X+1,每次移动花费一分钟
2、从X移动到2*X,每次移动花费一分钟
假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?
输入
两个整数,N和K
输出
一个整数,农夫抓到牛所要花费的最小分钟数
样例输入
5 17
样例输出
4
3.发型糟糕的一天
描述
农夫John 的N(1 ≤ N ≤ 80,000)只奶牛中,有一些也许正在经历发型糟糕的一天。每只奶牛对自己乱糟糟的发型都有自知之明,农夫John想知道所有奶牛能看到其他奶牛头顶的数量之和。
任意奶牛i身高记为 hi (1 ≤ hi ≤ 1,000,000,000),所有奶牛面向东方(本题示意图的右面)依次站成一条线。因此,奶牛i能够看到在它前面的(奶牛i+1,i+2…)所有身高比它低的奶牛,直到被一头比它高的奶牛挡住
考虑如下的例子:
=
= =
= - = Cows facing right ->
= = =
= - = = =
= = = = = =
1 2 3 4 5 6
奶牛#1 可以看见奶牛#2, 3, 4的头顶
奶牛#2 无法看到任何奶牛的头顶
奶牛#3可以看见奶牛#4的头顶
奶牛#4无法看到任何奶牛的头顶
奶牛#5可以看见奶牛#6的头顶
奶牛#6无法看到任何奶牛的头顶!
用ci表示奶牛i能够看到头顶的奶牛个数;请计算c1 至cN的和。对于上面这个例子,其和为:3 + 0 + 1 + 0 + 1 + 0 = 5。
输入
第1行:奶牛数N
第2行至N+1行:第i+1行包含一个整数,表示奶牛i的高度
输出
第1行:c1 至cN的累加和
样例输入
6
10
3
7
4
12
2
样例输出
5